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FOREWORD 
The ACS SYMPOSIUM SERIES was founded in 1974 to provide a 
medium for publishing symposia quickly in book form. The 
format of the Series parallels that of the continuing ADVANCES 
IN CHEMISTRY SERIES except that, in order to save time, the 
papers are not typeset but are reproduced as they are submitted 
by the authors in camera-ready form. Papers are reviewed under 
the supervision of the Editors with the assistance of the Series 
Advisory Board and are selected to maintain the integrity of the 
symposia; however, verbatim reproductions of previously pub
lished papers are not accepted. Both reviews and reports of 
research are acceptable, because symposia may embrace both 
types of presentation. 
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PREFACE 

T H E SYMPOSIUM UPON WHICH THIS V O L U M E is based was organized 

originally because of the perpetual need to better formalize both understand
ing and error in the analytical methods used in quantitative analytical work. 
In this field, problem areas occur in sampling, recovery, and quantitative 
measurement. These analyses involve the production of numbers or data that 
describe quantitatively the system under scrutiny. Those who have been a 
part of this process know the locations of the various errors and have some 
idea of the size of the error. They may even run appropriate statistical tests 
to quantitatively determine the amount of error. 

However, society likes to have decisions made in a black and white 
manner and to know whether something is there or not. This situation 
suggests that the analytical error should drop to zero. While this result is the 
goal of all analytical work, it is simply not realistic. Our basic need, then, is 
to simplify error determinations and explanations and to educate the public 
both for the reasons and for the interpretations of error. The goal of this 
volume is to further the use of mathematical and statistical tools—the field 
of chemometrics—for chemical and, specifically, trace chemical analyses of 
pesticides and environmental contaminants. 

Statistics have been used in chemical analysis in increasing amounts to 
quantify errors. The focus shifts now to other areas, such as in sampling and 
in measurement calibrations. Statistical and computer methods can be 
brought into use to give a quantified amount of error and to clarify complex 
mixture problems. These areas are a part of chemometrics as we use the term 
today. 

Errors in trace analyses are usually hidden to all except those intimately 
involved in the sample collection and, later, in the bench analysis. In 
chromatography, especially, it is too easy to hide behind uncertain work 
because published research does not concern itself with exactly how the 
chromatographer makes his quantitative decisions. Today, with the advent of 
the microprocessor and with the use of "black box" instruments, the 
chromatographer knows even less about his calibration graph or line, or the 
error associated with it. In these instruments, a single point and the origin 
may determine the calibration graph. Similar problems exist in other modern 
instrumental analysis techniques. 

This volume addresses these problems directly. The use of statistics 
enables error to be determined in calibration measurements at a particular 

ix 
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confidence level. Decisions can be made in sample selection, and the limits of 
detection can be determined in an orderly manner. The knotty problem of 
outliers can be approached systematically. The symposium on which this 
volume is based was formatted, first, to outline appropriate and noncumber-
some methods for analytical decision making and, second, to make the 
methods easily understandable to the ordinary bench chemist so that they 
will actually be used. I visualize this text, actively being used, next to an 
analytical instrument. I hope it is clear enough so that when used, the bench 
chemist will be able to obtain more meaningful results that can be 
interpreted on short notice. 

Acknowledgment is made to the donors of the Petroleum Research 
Fund, administered by the American Chemical Society, for their financial 
support that enabled foreign speakers to travel to the symposium upon 
which this volume is based. 

DAVID A. K U R T Z 

The Pennsylvania State University 
University Park, Pennsylvania 

March 25, 1985 
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1 
Statistics: A Child of Our Time? 

FRAUKE TSCHILTSCHKE 

Department of Philosophy, Christ ian Albrechts University of Kiel, Kiel, West Germany 

The use of data to represent sc ient i f ic information 
has been found not only to be of modern use but also 
to have been a part of our society for centuries. 
Science and s ta t i s t ics thus formed have explained 
our complex world in more and more detai l but have 
yet to fu l ly explain truth . . . the goal of the 
philosophers. 

"Every year 10% of the American chemists spend 40 hours i n 
conference rooms and use 19 pounds of paper." Even i f t h i s 
statement i s not a t r u t h f u l one, i t expresses one of the w e l l 
established forms of s c i e n t i f i c statements, namely a s t a t i s t i c a l 
one. We are quite used to dealing with s t a t i s t i c s , the c o l l e c t i o n 
and analysis of data and the drawing of conclusions from t h i s data 
( _1_ )• In a s c i e n t i f i c way, t h i s mode constitutes no problem. On 
the other hand compare these two statements: "Get a shot against 
the f l u because only very few of the inoculated people w i l l get 
the f l u , " versus "Get a shot against the f l u , because only 3% of 
the inoculated people w i l l get the f l u " . The second statement 
provides more precise information than the f i r s t . 

S t a t i s t i c s seems to be a "magic" word of our time! 
S t a t i s t i c a l use has rapid l y increased i n our century which has 
indicated that a strong b e l i e f i s now present. In e a r l i e r times, 
t h i s b e l i e f did not e x i s t , but are we not sure that the use of 
s t a t i s t i c s was not present then? Can i t be traced back to the 
early c i v i l i z a t i o n s ? 

This paper w i l l show that s t a t i s t i c s has been with us for a 
long time. The techniques have gradually developed from simple 
counting or information gathering to explaining complex phenomena 
with only l i m i t e d information. Not to be forgotten w i l l be the 
ultimate i n t e r a c t i v e role of philosophy. 

Current address: Klodtstrasse 12, 2408 Tinmendorfer Strand, West Germany 

0097-6156/ 85/0284-0001 $06.00/ 0 
© 1985 American Chemical Society 
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2 T R A C E R E S I D U E A N A L Y S I S 

S c i e n t i f i c Thinking 

In former times philosophers proposed g e n e r a l i t i e s to describe 
l i f e . They f a i l e d i n some respects because they were out of touch 
with r e a l i t y and did not look at f a c t s . The explanations were 
only l o g i c a l l y derived and suggested errant d i r e c t i o n s . 

Later s c i e n t i f i c endeavor gained favor because of i t s 
s e l f - c o r r e c t i n g nature. Making an observation, c o l l e c t i n g 
information, analyzing i t , and drawing conclusions which express 
the reasons for the common behavior i n a s c i e n t i f i c law i s exactly 
the way s c i e n t i f i c thinking works. I f facts found l a t e r were 
inconsistent, the g e n e r a l i t i e s were modified to include them. In 
short the understandable reason for an observed event was 
attempted to be found. 

Too often enough information simply was not a v a i l a b l e for 
adequate s c i e n t i f i c laws to be fashioned. In t h i s area, 
s t a t i s t i c s was found to have an ever-increasing r o l e . A 
confidence l e v e l was devised that allowed l i m i t e d facts to express 
larger g e n e r a l i t i e s . This narrowed the amount of work s c i e n t i s t s 
had to do to come to good conclusions (and sometimes increased the 
work they thought they had to do to reach a desired confidence!). 
Conclusions or hypotheses are never absolute but are more and more 
ce r t a i n as the number of facts available increases. Nonetheless, 
astounding amounts of good conclusions, again at a given 
confidence l e v e l , can be drawn from l i m i t e d f a c t s using 
s t a t i s t i c s . 

S t a t i s t i c s i n Former Times 

The early r o l e of s t a t i s t i c s was e s s e n t i a l l y only i n c o l l e c t i n g 
facts and assembling them i n an orderly way. I t seems to have 
been a valuable method since we have seen such an increase i n i t s 
use. For example, we have found reports about weather, s t a r s , 
sun, moon, and change of day and night i n a l l of the old cultures. 
Even without a complex language s c r i p t l i k e ours i t was possible 
to cut marks i n stones and s t i c k s , which allowed counting. In 
4241 B.C. Egyptians had a f a i r l y precise calendar; even the leap 
year was known ( 2_ ). Other examples of s c i e n t i f i c observations 
include r e g i s t r a t i o n s of populations, harvests, and tenure. 
Around 3700 B.C. Seneferu, a mighty warrior, raided and captured 
7,000 men and 200,000 sheep, c a t t l e , and goats ( .3 ). Wherever 
people l i v e d together and depended on each other, i t was necessary 
to make plans for the use of t h e i r land and a v a i l a b l e water for 
producing food. For example, i n Egypt the c u l t i v a t i o n depended on 
the flood area of the N i l e River. They, therefore, had 
observation stations along the r i v e r to measure the water l e v e l . 
From t h i s measuring they made the following very precise 
p r e d i c t i o n s : only a 21 foot l e v e l meant famine. A 23 foot l e v e l 
meant imperfectly watered land. However, at 26.5 feet the whole 
country had plenty of water ( 4̂  ). 
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1. T S C H I L T S C H K E Statistics: A Child of Our Time? 3 

One of the best examples of a precise s t a t i s t i c a l estimation 
of counting, analyzing, and drawing conclusions was the exact 
forecast of the ecli p s e of the sun i n 585 B.C. made by Thales of 
M i l l e t ( _5 ). 

New B e l i e f s i n Numbers 

Over the years people have switched t h e i r b e l i e f s from the 
explanations of the gods of former times to the explanations of 
the gods of modern times, the s c i e n t i s t s and s t a t i s t i c i a n s . I t i s 
easy to see how people have done t h i s . Modern people began to 
believe i n numbers and data because they represented nature so 
w e l l . The theories of science and s t a t i s t i c s were explained, and 
the ideas of science and s t a t i s t i c s became better founded and 
entrenched i n t h e i r thinking. However one mistake was made and 
that was a big one: facts and data were taken as t r u t h and 
r e a l i t y . 

The change i n the b e l i e f s of the people did not happen 
overnight. As facts and data began to substantiate the theories 
and methods of science, the b e l i e f s of the people slowly evolved 
away from the more general explanations of the philosophers. The 
f e e l i n g that the thinking of the philosophers represented t r u t h 
and r e a l i t y was l o s t . In former times the friends of t r u t h -
which i s the t r a n s l a t i o n of the Greek word for philosopher - t r i e d 
to f i n d basic explanations from which they could explain a l l the 
natural phenomena i n the world. However, the study proved to be 
too complex. In chemistry and physics, for example, there i s the 
b e l i e f that the world i s b u i l t of basic elements, but people kept 
f i n d i n g smaller and smaller elements: atoms, neutrons, and now 
neutrinos and quarks. Our thinking j u s t became shrouded with 
facts so that the wholeness of the world became l o s t . 

Wholeness Thinking Lost 

The t r u t h the philosophers searched for was strongly influenced by 
the idea of wholeness. Wholeness gives a broad d i r e c t i o n i n l i f e . 
However, our people have often f e l t that s c i e n t i f i c thinking has 
l o s t i t s connection to the idea of t r u t h and wholeness. The world 
i s so complex and detailed that people have become only 
s p e c i a l i s t s instead of g e n e r a l i s t s . The l a t t e r category includes 
the philosophers. We switched over to the idea that s p e c i a l i s t s 
can be the only ones that bring t r u t h . The d i f f e r e n t d i r e c t i o n s , 
such as math, physics, a r t , and philosophy, l o s t t h e i r connections 
to each other and were removed f a r away from t h e i r o r i g i n a l study 
areas and the idea of t r u t h and wholeness. Today the d i f f e r e n t 
departments b u i l d up such large realms of sp e c i a l knowledge that 
year-long studies are necessary to f i n d one's way through. For 
each of these s c i e n t i f i c realms people developed t h e i r own 
language which was almost l i k e the event of the bu i l d i n g the tower 
of Babel. 
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4 TRACE RESIDUE ANALYSIS 

With s t a t i s t i c s as an example, I have t r i e d to show how 
e a s i l y a progressive thought, although valuable i n explaining 
nature, loses i t s context. To be sure, s t a t i s t i c s has aided the 
development of science tremendously e s p e c i a l l y i n recent times. 
In s p i t e of t h i s , however, explanations of nature that a i d l i f e 
have f a l l e n short of t h i s mark. I t i s now necessary to f i n d again 
one common "language" so that we are able to put the r e s u l t s of 
the d i f f e r e n t f i e l d s together and to bring increased understanding 
of our world. 

Today people wish for s e c u r i t y . Their o r i e n t a t i o n i s 
expressed by the way they believe i n science, namely, i n something 
god-like that should be able to rule the world. Our society puts 
a l l emphasis on a s c i e n t i f i c education and s c i e n t i f i c research, 
and eliminates at the same time a l l other possible methods which 
can o f f e r explanations. Therefore, i t might be a good s t a r t to 
organize a d i f f e r e n t sort of conference, where s c i e n t i s t s from a l l 
d i s c i p l i n e s s i t together and discuss ways to cooperate with each 
other. Here philosophers should lead the discussions. L i v e l y 
discussions w i l l ensure new d i r e c t i o n s , ideas, and goals, which 
w i l l again be close to t h e i r o r i g i n a l thought, the friendship to 
tr u t h ! 
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2 
Sampling for Chemical Analysis of the Environment: 
Statistical Considerations 

B. KRATOCHVIL 

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 

A statistically val id sampling plan requires 
careful design and execution so that 
generalizations based on mathematical probabili ty 
can be drawn from a small number of test 
portions. Guidelines are given for estimation of 
the minimum number and size of sample increments 
needed to achieve a given level of confidence i n 
chemical analyses. 

A c c u r a t e s a m p l i n g f o r p e s t i c i d e s a n d p e s t i c i d e r e s i d u e s i n t h e 
e n v i r o n m e n t p r e s e n t s f o r m i d a b l e p r o b l e m s . The p o p u l a t i o n o f 
i n t e r e s t i s l i k e l y t o be c o m p l e x . I t may c o n s i s t o f s u c h 
d i v e r s e m a t r i c e s a s a i r , w a t e r , v e g e t a t i o n , s o i l , s e d i m e n t , 
f i s h , o r w i l d l i f e . F u r t h e r m o r e , c o n c e n t r a t i o n s o f t h e s o u g h t -
f o r s u b s t a n c e may be l o w a n d u n e v e n l y d i s t r i b u t e d . T h e 
n e c e s s i t y f o r a s o u n d s a m p l i n g p r o g r a m i n a n y s t u d y o f 
p e s t i c i d e d i s t r i b u t i o n i n t h e e n v i r o n m e n t i s g e n e r a l l y 
r e c o g n i z e d . Y e t p r o g r a m s a r e o f t e n s o d e s i g n e d a s t o be 
s t a t i s t i c a l l y u n s o u n d , o r a v a l i d , w e l l d e s i g n e d p l a n i s 
c o m p r o m i s e d b y e x p e d i e n c y o r c a r e l e s s n e s s . T h e e f f o r t e x p e n d e d 
o n e v a l u a t i o n o f s a m p l i n g d e s i g n s f o r p e s t i c i d e m o n i t o r i n g i s 
u s u a l l y e x c e e d i n g l y s m a l l c o m p a r e d w i t h t h a t e x p e n d e d o n t h e 
a n a l y t i c a l m e a s u r e m e n t s . I n o n l y a f e w c a s e s h a v e g e n e r a l 
c o n s i d e r a t i o n s f o r s t a t i s t i c a l l y s o u n d e n v i r o n m e n t a l s a m p l i n g 
p l a n s b e e n d i s c u s s e d (J_#_2) • 

A n e x a m p l e o f a t h o r o u g h s a m p l i n g s t u d y i s t h e 
i n v e s t i g a t i o n o f f u n g i c i d e p e r s i s t e n c e i n s o i l b y a r a n d o m i z e d 
s a m p l i n g p l a n (3)• O t h e r a u t h o r s h a v e p r e s e n t e d g e n e r a l 
c r i t e r i a f o r s a m p l i n g m a t r i c e s s u c h a s s o i l s ( 4 ) , p l a n t s a n d 
s o i l s {5), a n d a i r ( 6 ) ; a more g e n e r a l r e v i e w o n s a m p l i n g f o r 
c h e m i c a l a n a l y s i s i s a v a i l a b l e ( J 7 ) . A u s e f u l d i s c u s s i o n 
c o n t a i n i n g much p r a c t i c a l i n f o r m a t i o n h a s b e e n p r o v i d e d b y t h e 
m o n i t o r i n g p a n e l o f t h e F e d e r a l W o r k i n g G r o u p o n P e s t 
M a n a g e m e n t i n t h e U . S . A . ( 8 ) . T h i s g r o u p o b s e r v e d t h a t m o s t 

0097-6156/85/0284-0005$06.00/0 
© 1985 American Chemical Society 
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6 T R A C E R E S I D U E A N A L Y S I S 

recorded data on deleterious substances in the environment have 
not come from programs designed according to s t a t i s t i c a l 
p r inciples, and so the r e l i a b i l i t y of extrapolations from the 
results cannot be assessed. 

The r e l i a b i l i t y of any environmental a n a l y t i c a l data 
depends upon the r e l i a b i l i t y of sample quality. To generalize 
from a n a l y t i c a l results on a small portion of material to a 
larger population requires careful planning and execution i f 
bias i s to be avoided. This a r t i c l e considers the general 
problems involved in sampling heterogeneous bulk populations 
such as s o i l , a i r , and natural waters; s p e c i f i c details for 
particular types of materials are not included. These problems 
include the heterogeneity of most environmental materials; the 
costs i n time, manpower, and e f f o r t required for co l l e c t i o n of 
real samples; and the need to avoid contamination or 
decomposition of samples after c o l l e c t i o n . 

A set of definitions of terms frequently used in sampling 
i s provided because usage sometimes d i f f e r s among 
s t a t i s t i c i a n s , chemists, and others. The definitions have been 
selected after consideration of the recommendations of various 
standards organizations• 

Background 

Sources of error i n an analysis may be c l a s s i f i e d as random or 
systematic. Systematic errors generally bias a result in one 
direction in a r e l a t i v e l y reproducible way and are not usually 
amenable to s t a t i s t i c a l treatment. Random errors vary in a 
nonreproducible way around the true value and can be treated 
s t a t i s t i c a l l y by the laws of probability. Therefore in this 
discussion we sh a l l deal only with random errors, keeping i n 
mind that most errors are partly random and partly systematic 
and that systematic errors in the an a l y t i c a l operations can be 
controlled by proper use of blanks, standards, and reference 
samples. Because poor samples are not i d e n t i f i a b l e by such 
checks, sampling uncertainty i s often treated separately. For 
random errors the overall variance s 2 i s the sum of the 

_ . . 2 " ~ ° . . sampling variance s_ and the variance of the remaining 
—s 2 2 2 2 2 

a n a l y t i c a l operations : = + -f-a * T t l e v a l u e o f s s 
may be obtained by subtraction of s 2 (known i f a measurement 

—a o 
process i s in s t a t i s t i c a l control) from (obtained by 
analysis of the samples). Alternately, a series of replicate 
measurements or samples can be designed to evaluate both 
standard deviations. Reduction in the overall uncertainty 
requires, therefore, attention to both sampling and an a l y t i c a l 
operations. Once the an a l y t i c a l standard deviation s i s one 
thi r d or less of the sampling standard deviation s^, further 
reduction i n has l i t t l e e f f e c t on ( 9 ) . 

An example of the importance of sampling i s in the 
determination of aflatoxins (a class of highly toxic compounds 
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2. K R A T O C H V I L Sampling for Chemical Analysis of the Environment 1 

produced by molds) in peanuts (10 r11) • Because the 
d i s t r i b u t i o n of contaminated kernels i s t y p i c a l l y patchy and 
uneven, and because the tolerable lev e l of contamination i s so 
low (about 25 ppb), sampling i s the major source of a n a l y t i c a l 
uncertainty even with samples of over 20 kg. 

The overall a n a l y t i c a l process can be divided into f i v e 
s t e p s — construct a model, design a plan, take samples, perform 
analyses, and evaluate results (12)• The model defines the 
population to be studied, the substances to be measured 
(including speciation), the extent of d i s t r i b u t i o n within the 
population, and the lev e l of precision required. The sampling 
plan specifies the number, size, and location of the sample 
increments, the extent of combining of increments 
(compositing), and the procedures for reduction of the bulk or 
gross sample to a laboratory sample and to test portions 
(subsampling). The plan should be written as a detailed 
protocol before work begins and revised as warranted by new 
information. It should include on-site c r i t e r i a for c o l l e c t i o n 
of a v a l i d sample, such as whether a substance should be 
considered foreign to the population and rejected. A discarded 
piece of metal or p l a s t i c in a f i e l d , for example, might be 
considered foreign for a s o i l analysis and therefore 
legitimately rejected. I t should also include information on 
procedures for protection of the sample from contamination 
before and after c o l l e c t i o n , for preservation, and for labeling 
and recording of a l l appropriate information. 

F i e l d sampling operations are often costly in time and 
manpower. Those c o l l e c t i n g samples should be aware of the 
p o s s i b i l i t y of bias and contamination. 

Random and Systematic Sampling 

In devising a model for an a n a l y t i c a l operation, we identify a 
target population to which we want our conclusions to apply. 
This w i l l d i f f e r from the parent population from which the 
samples are actually taken. The difference may be reduced by 
random selection of individual portions (increments) for 
analysis so that each part of the population has an equal 
chance of selection. Genuinely random sampling i s d i f f i c u l t 
because bias, unconscious or deliberate, i s readily 
introduced. Untrained individuals often have d i f f i c u l t y in 
accepting that an apparently unsystematic sampling pattern must 
be followed to be v a l i d . 

For simplicity and convenience, sampling at evenly spaced 
intervals over a population is often used in place of random 
sampling. For example, a f i e l d may be divided into uniform 
segments, and a sample taken from the center of each segment. 
This procedure i s generally subject to more bias than random 
sampling• Should pe r i o d i c i t y i n the population be present or 
suspected, segments to be sampled should be selected with the 
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8 T R A C E R E S I D U E A N A L Y S I S 

aid of a table of random numbers (13) • The sampling s i t e 
within each segment should then be selected by further d i v i s i o n 
into imaginary subsegments, each assigned a number, and the one 
to be sampled selected from a table of random numbers. 
Sometimes random sampling i s d i f f i c u l t to execute, as when a 
stream is being monitored with a time-activated automatic 
remote sample c o l l e c t i o n device. Under such conditions a 
random sta r t or other superimposed random time element may be 
substituted. The e f f i c i e n c y of systematic sampling improves as 
the population becomes better understood. Both theoretical and 
experimental studies of this point have been made (14)• 

When the component of interest i s distributed in a 
segregated way, special sampling precautions may be needed. 
Thus, a pesticide may have been distributed i n higher 
concentration in one part of the area under study or may have 
undergone more rapid degradation in a low wet portion of a 
f i e l d . To obtain a v a l i d sample of a s t r a t i f i e d material, the 
procedure recommended (15) i s to (i) divide the population into 
segments (strata) based on the known or suspected pattern of 
segregation, ( i i ) further divide the major strata into 
subsections and select the required number of subsections to be 
sampled by use of a table of random numbers, and ( i i i ) c o l l e c t 
samples proportional in number to the relati v e size of the 
major s t r a t a . S t r a t i f i e d random sampling i s preferable to 
unrestricted random sampling, provided the number of major 
strata i s kept s u f f i c i e n t l y small that several increments can 
be taken from each. 

Composite Samples 

When only the average properties of a population, and not the 
v a r i a b i l i t y or d i s t r i b u t i o n of the sought-for component, are of 
interest, a composite sample may be prepared and analyzed. 
Distinction should be made between composite and representative 
samples. A representative sample i s frequently defined as one 
that possesses the average properties of a population; a 
composite sample i s usually produced by homogenizing i n any of 
several ways one or more sample increments, and i t constitutes 
one approach to producing representative samples. Compositing 
usually means fewer analyses are required, and sample storage, 
recording, and handling are simplified once compositing i s 
completed. But much useful information may be lost i n 
preparing a composite sample. Analysis of individual samples 
collected by a properly designed and executed sampling plan 
permits determination of the between-sample and within-sample 
v a r i a b i l i t y as well as the average composition. This 
information helps to establish the heterogeneity of the 
population, i d e n t i f y anomalous samples, and evaluate 
differences within and between laboratories. Thus composite 
samples provide limited information and should be employed only 
after careful consideration of the disadvantages involved. 
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2. K R A T O C H V I L Sampling for Chemical Analysis of the Environment 9 

Subsampling 

If the sample increment i s larger than the amount (test 
portion) needed per measurement, subsampling i s necessary• 
This operation may be simple, as with many l i q u i d or gaseous 
materials, or complex, as with certain bulk s o l i d s . The work 
required to produce a uniform subsample depends on the 
heterogeneity of the o r i g i n a l material. Subsampling of solids 
may require several steps of par t i c l e size reduction and 
mixing; much has been written on this topic. Particle size 
reduction i s important when the particles d i f f e r appreciably in 
composition because sampling error may occur even in a well 
mixed sample i f too few particles are taken for analysis. One 
approach to determining the extent of the reduction needed i s 
to treat the sample as a two-component mixture, with each 
component containing a di f f e r e n t amount of the substance of 
interest (16,17)• This treatment i s based on a binomial 
di s t r i b u t i o n of the two kinds of p a r t i c l e s . Because i t has 
been covered in d e t a i l elsewhere, i t w i l l not be considered 
here. 

Distributions Found in Nature 

For the purpose of sampling for chemical analysis three types 
of distributions can be considered. These are the Gaussian 
(also known as the normal, Laplace, or DeMoivre), the Poisson, 
and the negative binomial. Knowledge of the type of 
d i s t r i b u t i o n i s useful in devising the most e f f i c i e n t sampling 
design. Gaussian and Poisson distributions are both closely 
related to the binomial d i s t r i b u t i o n , which applies to the 
probability of whether or not an event w i l l be observed in a 
series of independent observations. [The binomial d i s t r i b u t i o n 
i s based on the probability of an event or property being 
observed _p, or not observed 1-p_, in a series of _n independent 
observations. The d i s t r i b u t i o n of the number of times the 
event i s observed, x, in j i t r i a l s i s given by 

For further information see Reference 18.] The event might be 
the presence of any particular attribute in a sample, such as 
the detection of a pesticide. Only two levels of the attribute 
are possible, present or not present. If many attributes 
contribute to the result of an observation, the binomial 
probability d i s t r i b u t i o n approaches a l i m i t i n g curve whose 
equation i s given by _y = (1/a v2%) exp[-(x-ji) / 2 a 2 ] . As 
applied to an an a l y t i c a l measurement of a substance, y_ i s the 
probability of a measurement value being observed, j i i s the 
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10 T R A C E R E S I D U E A N A L Y S I S 

true value for the substance, and o_ i s the standard deviation 
in jx. This equation describes the Gaussian d i s t r i b u t i o n . This 
d i s t r i b u t i o n i s observed for a large fraction of the systems 
encountered in chemical analysis; a characteristic i s that j i i s 
greater than JJ2. 

The Poisson d i s t r i b u t i o n is closely related to the 
binomial, and i s likewise derived from consideration of 
discrete properties. [The Poisson d i s t r i b u t i o n i s given by 
pOO = e~ _^X/x! where \ = N£_ when N_ i s large and p_ i s small. 
Thus \ i s the expected number of events occurring on any given 
observation, x = \. The Poisson d i s t r i b u t i o n i s a l i m i t i n g 
form of the binomial d i s t r i b u t i o n (18).] I t applies when the 
possible number of values N_ i s large but the probability p̂  of 
the attribute of interest being observed i s small. One example 
is the measurement of radioactive decay, where the probability 
of any one of a large number of atoms undergoing decay at a 
given time may be small. Another example might be the location 
of a weed seedling or a l i v e insect in a f i e l d after spraying 
with a pesticide. In the f i e l d there are a large and 
unspecified number of points where a weed plant or insect might 
be found, but the probability of finding one at a given point 
w i l l be small i f the application of pesticide has been 
successful. The Poisson d i s t r i b u t i o n i s characterized by j i , 
the mean or average, being equal to the variance . Thus the 
standard deviation s_ for a set of measurements in a Poisson 
d i s t r i b u t i o n i s e a s i l y obtained by taking the square root of 
the average, s_ = /x. Each observed event must be independent 
for the Poisson d i s t r i b u t i o n to hold. 

A third type of probability d i s t r i b u t i o n frequently 
encountered i n nature i s where the occurence of one event at 
some location increases the probability of other events being 
observed nearby. This leads to clumping or patchiness, 
characteristic of many b i o l o g i c a l systems such as weed or 
insect infestations, and mold growth in stored grains. 
Although a variety of probability distributions have been 
considered for contagious systems, the most successful appears 
to be the negative binomial. Here a distinguishing 
characteristic i s that o*g

2 i s greater than j i . 
Major considerations" in any sampling plan are the size and 

number as well as the location of the sampling increments. The 
following sections consider aspects of these points. 

Estimation of Minimum Size of Sample Increments 

For the determination of a chemical or a pesticide in a f i e l d 
the sampling increment may be a bulk quantity such as a core of 
s o i l , a volume of a i r passed through a particulates c o l l e c t o r , 
or a quantity of vegetation gathered from a single s i t e . A 
useful method for relating the amount of sample in an increment 
to the sampling uncertainty, developed by Ingamells (19,20) 
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2. K R A T O C H V I L Sampling for Chemical Analysis of the Environment 11 

for mining exploration, can be applied e f f e c t i v e l y to 
unsegregated Gaussian d i s t r i b u t i o n s . In this approach a 
sampling constant _Kg, corresponding to the weight of sample 
required to l i m i t the sampling uncertainty to 1% relative with 
68% confidence, i s defined by 

Kg = WR2 (1) 

where W_ represents the weight of sample taken and R_ i s the 
re l a t i v e standard deviation in sample composition. For a given 
population, Kg i s evaluated by performing a series of analyses 
on sets of samples of d i f f e r i n g size either by calculation or 
with the aid of a sampling diagram. An example i s a study of 
human l i v e r homogenate prepared by cryogenic grinding at the 
National Bureau of Standards (21)• The effectiveness of the 
homogenization step was assessed by withdrawing a small portion 
of tissue, i r r a d i a t i n g i t , adding i t to the remainder of the 
sample, performing the homogenization operation, and measuring 
the sodium-24 a c t i v i t y in ten samples each of about 0.1, 1, and 
5.5 g. For the f i r s t set of ten a value of 13.1 was obtained 
for the percent relative standard deviation R_, for the second 
set a value of 5.5%, and for the third 2.53. From Equation 1 
values for Kg are 17, 30, and 35. Thus the value for K c 

approaches 35, and this i s the best estimate of the sampling 
constant. From Equation 1, then, we find that the weight of 
subsample in grams required to hold the sampling uncertainty to 
1% relative i s 35 g. Equation 1 can be used to estimate the 
sampling uncertainty for subsamples of other sizes. In the 
above example, a subsample of 0.5 g would be expected to give a 
sampling uncertainty of about 8% r e l a t i v e . 

Note that preliminary measurements are necessary to 
establish the degree of heterogeneity of the individual sample 
increments whenever the properties of the population are 
unknown. Under such conditions estimation of K„ should not be 

—s 
based on a single increment, but on results from several. I t 
i s always sound practice whenever possible to perform a 
preliminary assessment of an unknown population by c o l l e c t i n g a 
few samples and analyzing for the component of interest. These 
samples can be selected on the basis of experience and 
judgment. Then on the basis of the preliminary results a 
refined sampling plan can be designed. 
Estimation of Minimum Number of Sample Increments 

A second factor to consider in a va l i d sampling plan i s the 
co l l e c t i o n of enough individual sample increments to ensure 
that heterogeneity on a large scale does not bias the 
r e s u l t s . Estimation of this number can be made 
straightforwardly i f the component of interest i s distributed 
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12 TRACE RESIDUE ANALYSIS 

throughout the population according to a known s t a t i s t i c a l 
r e l a t i o n . 

If the d i s t r i b u t i o n i s Gaussian or binomial, the minimum 
number of increments can be estimated from 

n = ^ = f - x 1 0
4 ( 2) 

R x_ 
where t_ i s the Student's _t-table value for the level of 
confidence desired, and are estimated from preliminary 
measurements on or previous knowledge of the population, and _R 
i s the percent relative standard deviation acceptable as 
sampling uncertainty. I n i t i a l l y , t_ can be set at the value for 
95% confidence l i m i t s , 1.95, and an i n i t i a l estimate of _n 
calculated. The t_ value for this n_ can then be substituted, 
and the system iterated to constant _n. 

If the d i s t r i b u t i o n i s Poisson, s 2 = x, and Equation 2 
simplifies to 

* 4 n = — x 10 (3) 
R £ 

For a negative binomial d i s t r i b u t i o n an index of clumping k_ 
must be incorporated, and Equation 2 becomes 

n - ^ ^ H l O 4 ) (4) 
R x i i 

Both k_and x^are estimated from preliminary measurements. 

Estimation of Number and Size of Increments for a Segregated 
Population 

When the population i s segregated, a number of samples should 
be taken from each stratum or segment. A guide to the number 
of samples to c o l l e c t under these circumstances has been 
developed by Visman (22,23)• Through an empirical study, 
subsequently put on a theoretical footing by Duncan (24,25), 
Visman derived the relation 

±Q2 = A/w n_ + JB/n_ (5) 
2 

where i s the variance of the average of n_ samples of 
individual weight w, and _A and _B are constants for a given 
population. The magnitude of Â  depends on the degree of 
homogeneity at the l o c a l l e v e l , and may be calculated from 
Ingamell's subsampling constant jC and the average 
concentration of sought-for component x̂  by 

A = 1 0 ~ 4 x 2 K — — —s 
Once and x have been estimated by n preliminary measurements 
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2. K R A T O C H V I L Sampling for Chemical Analysis of the Environment 13 

on a given material, B_ can be estimated by calculating for 
the same preliminary measurements and substitution into 
Equation 5. The magnitude of _B depends on the extent of 
segregation or s t r a t i f i c a t i o n in the material. Once A_and J5 
are known, and an acceptable lev e l for the standard deviation 
of sampling decided on, various combinations of w_ and n_ can be 
chosen to hold s„ within the selected value. 

—6 
Two other methods of obtaining values for A_and B_ have 

been developed. In the f i r s t , two sets of samples, one of 
r e l a t i v e l y large and the other of r e l a t i v e l y small increments, 
are collected; the constant i s obtained from the measurements 
on the small samples, and the constant from the large 
samples. Small samples make the f i r s t terms on the right side 
of Equation 5 larger than the second by emphasizing the effects 
of l o c a l heterogeneity and by making the value of smaller. 
Large samples have the reverse effect, and when ŵ  i s of such a 
size that the second term swamps the f i r s t , a value for _B can 
be calculated. 

If the material being sampled consists of discrete 
particles such that an average p a r t i c l e mass can be calculated, 
then s t i l l another method i s useful. In this procedure the 
constants _A and B_ of Equation 5 are obtained from the 
intraclass correlation c o e f f i c i e n t r_ between pairs of small, 
single-increment samples of equal mass, the increments of each 
pair being collected near each other and the pairs distributed 
over the population under study. The value of r_ can be 
estimated from the relation 

2Z(x-x)(x'-x) 
Z(x-x) + E(x'-x) 

where the sums are over a l l pairs x_ and x_' and i s the mean of 
a l l measurements (26). From this p i l o t study of 10 to 20 pairs 
the constants A_ and B_ are obtained by A_ = s^/( rm + 1/w) and B_ = 
rAm. Here jn equals 1/(average p a r t i c l e mass), the mass of 
the individual sample increments, and js_ the pooled standard 
deviation for the measurements. An attractive aspect of this 
approach i s that i t also allows calculation of a minimum 
detectable bias (MDB) i n the sampling operation for any 
specified confidence lev e l and number of samples from the 
rel a t i o n 

MDB = ts/2/n 

The value for t_ i s obtained from a table of student's t_ values 
(see, for example, Table T-5 i n Ref. 13, or Table A-4 i n Ref. 
26) for the desired confidence level and number n_ of samples 
taken. The need to estimate the average p a r t i c l e mass limits 
this method to granular materials. 

An example of a calculation of Tj _A, B, and MDB i s given 
i n the Appendix. 
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14 T R A C E R E S I D U E A N A L Y S I S 

Estimation of Sample Size when Form of Population Distribution i s 
Unknown 

In the preceding sections the Gaussian, Poisson, and clumped 
distributions have been discussed, and methods of calculating 
the number of samples in each case have been given. When no 
information i s available about a population, however, the 
question arises as to the best approach to use. If s u f f i c i e n t 
samples can be collected and analyzed to establish the 
d i s t r i b u t i o n as one of the three, the problem i s solved. If 
the d i s t r i b u t i o n does not f i t one of the above, i t should be 
checked to see whether i t can be converted to Gaussian by 
taking the logarithm of the values. Transformations using 
functions other than logarithmic may be considered, but are not 
e a s i l y related to most real systems. 

For unknown d i s t r i b u t i o n forms where only limited data i s 
available i t i s possible to draw useful conclusions without 
knowledge of the d i s t r i b u t i o n . For example, a confidence 
interval can be established for a set of a n a l y t i c a l values by 
plotting cumulative percent of the number of analyses on the 
v e r t i c a l axis against the individual a n a l y t i c a l values on the 
horizontal axis. Then draw lines p a r a l l e l to this plot at a 
distance of 100 d 1 - a ,the values for &̂ _a being read from a 
table for various numbers of samples and confidence intervals 
(see, for example, Table A-21 in Ref. 18). Tables are also 
available to determine the number of samples required to be 
able to state that the population cumulative d i s t r i b u t i o n i s 
within a defined band at a selected confidence level (Ref. 18, 
Table A-21b)• The numbers tend to be large. For example, to 
be 95% sure of containing the d i s t r i b u t i o n within an interval 
of ±10% relative 740 samples would be required. Clearly the 
price required for not knowing the form of the population 
d i s t r i b u t i o n i s more data. 

Conclusions 

A general theory for sampling a heterogeneous system such as 
the environment for trace levels of substances such as 
pesticides i s not l i k e l y to become available for some time. 
Although a variety of models have been proposed to describe 
s p e c i f i c distributions, each requires prior knowledge of the 
system under study. The best approach appears to be to carry 
out a set of preliminary sampling and analysis operations based 
on knowledge of similar systems from past experience. The 
extent of the preliminary work depends on the time and 
resources available; the more care and e f f o r t expended, the 
better i s the quality of the data ultimately collected. On the 
basis of this i n i t i a l information a model and sampling plan can 
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2. KRATOCHVIL Sampling for Chemical Analysis of the Environment 15 

be developed. I t must be borne in mind that the plan may need 
to be altered as a result of data being collected i n the course 
of the work. Such alteration i s val i d i f s t a t i s t i c a l 
principles are carefully adhered to throughout. 
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Appendix 
Example of Application of Sampling Theory to Pesticide Analysis 

Taylor, Freeman, and Edwards (27) performed a study of the 
pathways and rate of loss of the pesticide d i e l d r i n from a 
grass-meadow s o i l . The large number and variety of samples 
collected and analyzed allow evaluation of the uncertainty 
associated with the sampling operation. B r i e f l y , in one part 
of their investigation a set of three s o i l cores of d i f f e r i n g 
diameters was collected in a diagonal pattern within each 
square meter of a 6 m x 6 m square portion of a f i e l d (Figure 
1). Core depth was 17.7 cm; core diameters were 21, 24, and 44 
mm. The cores were each extracted with 1:1 hexane:2-propanol. 
The extract was washed with water and the residual hexane 
injected into a gas chromatograph. The precision of the 
extraction and measurement operations can be estimated to be of 
the order of a few per cent. Relative to the v a r i a b i l i t y 
observed i n the overall results, these uncertainties can be 
considered negligible. The results, calculated on an area 
basis to f a c i l i t a t e comparison, are reproduced in Table I. 

The data show a wide range; the values in Columns B and C 
are r e l a t i v e l y high, while those in Column E are r e l a t i v e l y 
low. The authors suggested that these variations may r e f l e c t 
i r r e g u l a r i t i e s i n the spray application of the pesticide. A 
second, more l o c a l , v a r i a b i l i t y was attributed to incomplete 
mixing of the s o i l after the spray application. The result i s 
a large value for the overall standard deviation, 166 mg per 
square meter. 

Given these data, what statements can we make about the 
number and size of samples that would have to be taken to hold 
the sampling standard deviation to some prescribed level? 
Calculation of Ingei^H^ subsampling constant i s not 
appropriate since segregation i s present. 

The minimum number of sample increments required can be 
calculated from either Equation 2 or 5. From Equation 2, 
assuming that a 50% level of confidence i s desired and that an 
acceptable percent relative standard deviation R i s 50, j i 
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Figure 1. Sampling grid (6><6 m) and location of 
individual cores within each grid square. (Large core, 
L; medium core, M; small core, S.) Reproduced with 
permission from Ref. 26, Copyright 1971, American 
Chemical Society. 
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2. K R A T O C H V I L Sampling for Chemical Analysis of the Environment 17 

Table I. Dieldrin Contents (rag/m ) of Individual S o i l Cores 
Taken from a Rectangular 6-m Grid of Treated Fi e l d S o i l . 

Column 
Row Core A B C D E F Mean Dev. 

L 218 353 406 359 50 294 
1 M 51 139 623 127 47 483 250 165 

S 167 315 307 350 34 262 
L 217 396 215 54 86 89 

2 M 442 456 200 55 39 65 194 141 
S 332 287 244 181 29 106 
L 263 507 79 22 29 234 

3 M 126 380 110 57 42 222 175 155 
S 145 107 529 117 38 122 
L 108 152 190 71 48 102 

4 M 143 376 566 79 39 232 174 143 
S 195 251 379 68 39 93 
L 622 283 125 21 93 276 

5 M 299 385 170 25 59 218 200 155 
S 287 237 175 34 30 335 
L 115 797 325 16 64 528 

6 M 195 626 212 20 126 160 246 225 
S 153 465 201 28 64 339 ——— 

Mean 223 362 281 94 54 231 207 

Std. Dev. 135 172 160 105 25 130 166 

Reproduced with permission from Ref. 25, Copyright 1971, 
American Chemical Society. 
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18 T R A C E R E S I D U E A N A L Y S I S 

equals 240. This means that i f 240 random samples were taken 
the true percentage of d i e l d r i n would be expected to f a l l 
within the range ± 0.5 £ of the average, x, 50% of the time. 
This s i g n i f i c a n t uncertainty for such a large number of samples 
ref l e c t s the large standard deviation. If only the average 
concentration on the f i e l d were needed, to save time and e f f o r t 
i t would be worthwhile to combine several sample increments, 
mix thoroughly, and analyze subsamples taken from the 
composite. This approach would of course s a c r i f i c e information 
on the d i e l d r i n d i s t r i b u t i o n p r o f i l e . Note that the relative 
standard deviation due to the chemical analysis step, ~5%, i s 
not a major contributor to the overall uncertainty. 
Consideration might be given to a less precise but more rapid 
and inexpensive a n a l y t i c a l procedure. 

A second method of estimating the number of sample 
increments required i s by Visman 1s approach, applying Equation 
5. For estimation of the random sampling component, given by 
the f i r s t term on the right side of Equation 5, r e l a t i v e l y 
small samples should be chosen to ensure that the contribution 
of the f i r s t term i s much greater than that of the second. 
Repeating the study with samples s u f f i c i e n t l y large to reverse 
the relative contributions of the two terms allows estimation 
of the second term, the segregation component of the o v e r a l l 
variance. Unfortunately the v a r i a b i l i t y i s so great in this 
system that even the largest samples are not large enough to 
allow estimation of the spray-pattern v a r i a b i l i t y , that i s , 
v a r i a b i l i t y caused by a nonrandom component in the 
d i s t r i b u t i o n . Thus adequate values for j \ and B_ i n Equation 5 
cannot be calculated with the data at hand. 

As mentioned e a r l i e r , Visman (21) suggested that the 
constants A, B, w, and n_ in Equation 5 may also be evaluated by 
selecting adjacent pairs of samples and performing a regression 
analysis. Application of this method to the d i e l d r i n in s o i l 
systems i s i l l u s t r a t e d in Tables II and III, where values of 
the constants A_and B_have been calculated by this procedure, 
along with the number of samples needed to obtain the 
percentage of d i e l d r i n within 50% confidence l i m i t s . In Table 
II the large cores from sectors 1A and 1B, 1C and 1D, 1E and 
1F, 2A and 2B, and so on were paired. In Table III, large 
cores from 1A and 2A, 1B and 2B, 3A and 4A, and so on were 
taken. Each set contained 18 p a i r s . With an assumed s o i l 
density of 2, the weight of the large cores i s 537 g, and that 
of the small cores 123 g. In a f r i a b l e and r e l a t i v e l y 
heterogeneous material such as s o i l the estimation of average 
pa r t i c l e mass is a r b i t r a r y . For purposes of i l l u s t r a t i o n an 
average p a r t i c l e mass of 0.2 g was assumed. Note that bias 
produced by the spraying pattern causes pairs oriented p a r a l l e l 
to the spray direction to yi e l d a lower number of required 
samples than pairs oriented perpendicular to the pattern. 
Random pairing directions are therefore necessary to avoid this 
source of bias. 

 P
ub

lic
at

io
n 

D
at

e:
 J

ul
y 

15
, 1

98
5 

| d
oi

: 1
0.

10
21

/b
k-

19
85

-0
28

4.
ch

00
2



2. K R A T O C H V I L Sampling for Chemical Analysis of the Environment 19 

Table I I . Calculation by Visman Equation of Number of 
Samples Required for Determination of Dieldrin with a Sampling 
Uncertainty of ±50% Relative Standard Deviation in Test Data 
of Table I r Using Pairs of Large Cores Taken Perpendicular 

to Spray-Track Direction. 

x1 x 

218 353 
406 359 
50 294 
217 396 
215 54 
86 89 
263 507 
79 22 
29 234 
108 152 
190 71 
48 102 

622 283 
125 21 
93 276 
115 797 
325 16 
64 528 

N s 
A = 'pooled _ (1)(34274) 

r m 4 ¥ 
1 .20 x 1CT 

( 0 ' 0 5 6 9 ) ( ^ ) + 5 5 7 

B = rAm = (0.0569)(1.197xi0 5)(7~-r) 

= 3.405X104 

For a sampling uncertainty at the 95% 
confidence interval equal to 50 mg/m̂  

2 r 50 ̂ 2 651 

x 180.72 253.00 

s 151.09 213.82 

3 = x 1 - x 2 = -72.28 

Spooled - (151.09 2 + 
213.82 2) 1 / 2 = 185.13 

r = 0.0569 (from 
Equation 6) 

For a sample weight of 1 kg and average 
pa r t i c l e mass of 0.2 g, 

n = ^ ^ r — = 52 

For a sample weight of 500 g, n = 53; for 
120 g, n = 54 

For determination of minimum detectable 
bias (MDB) at the 95% confidence l e v e l : 

MDB = t # 9 5 s 1 V ^ = (1 .96)(25.5)V^§ 

= 10 mg/m2 
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20 TRACE RESIDUE ANALYSIS 

Table I I I . Calculation by Visman Equation of Number of 
Samples Required for Determination of Dieldrin as i n 

Table II, but Using Pairs of Large Cores taken P a r a l l e l to 
Spray-Track Direction. 

x1 X 

218 217 
353 396 
406 215 
359 54 
50 86 
294 89 
263 108 
507 152 
79 190 
22 71 
29 48 
234 102 
622 115 
283 797 
125 325 
21 16 
93 64 
276 528 

235.22 198.50 

3 = x 1 - x 2 = 36.72 

Spooled " 1 4 7 ' 1 5 

A - " H I " ' " ) 2
 = 2 . 1 2 6 x 1 0

4 

( 0 ' 2 0 3 3 ) t o ) + 537 

B = (0.2033) (21 ,260) (-~-) = 2.161 x 10 4 

u • 2. 

After Table A-I, s 2 = (— 
' 1 .96 

651 

Then for a sample of 1 kg, 
2.126X1Q4 . „ ^ „ 4X 

loop + ( 2 - 1 6 1 x 1 0 } „ 
n = — = 33 

For samples of 500 or 120 g, j i = 33 
(same as for 1 kg) 

MDB = (1.96)(25.51)/2/33 = 12 mg/m2 

r = 0.2033 
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2. KRATOCHVIL Sampling for Chemical Analysis of the Environment 21 

The sources of v a r i a b i l i t y in this system were interpreted 
by Taylor et a l . (27) as l i k e l y coming from a combination of 
uneven application (overlap or gaps i n coverage during the 
spraying operation) and variable and incomplete mixing of the 
applied material into the s o i l . The sampling was performed 
about two years after the application, so the v a r i a b i l i t y 
persists for at least that long. Clearly pesticide 
concentrations in s o i l s depend in a major way on the uniformity 
of application and the extent of mixing of the applied material 
into the s o i l . The f i r s t i s a segregation effect, and the 
second a loc a l homogeneity e f f e c t . Accurate estimation of the 
segregation level require a large number of samples. Reduction 
of the uncertainty due to nonhomogeneity requires that 
individual sample increments be much larger. A 500 g sample, 
corresponding to the largest collected i n this study, i s not 
s u f f i c i e n t to provide adequate assessment of the heterogeneity 
at the l o c a l l e v e l . A sample of 1 kg (or more i f better than 
±50 mg/m2 uncertainty i s required) would be advisable. If a 
subsample were taken for analysis, the c o l l e c t i o n of larger 
sample increments would not be too d i f f i c u l t . 

The subsampling step would in i t s e l f create an additional 
source of uncertainty, however. In the core study outlined 
here the entire increment was treated, so a subsampling error 
was not present. If a larger sample increment were taken i t 
might be necessary to carry out a subsampling operation. In 
this event the uncertainty associated with the subsampling step 
could be evaluated separately by running replicate subsamples 
from the same increment and calculating the standard 
deviation. If this value i s less than one third that of the 
sampling step i t i s not a s i g n i f i c a n t contributor to the 
ov e r a l l uncertainty. If i t i s larger the increments should be 
homogenized further before subsamples are taken. 

It can be concluded that for a system as heterogeneous as 
this example the number and size of the samples must be large 
i f a s i g n i f i c a n t reduction in the sampling uncertainty i s to be 
achieved. The data also reveal the extent of the v a r i a b i l i t y 
i n spray application. An additional conclusion i s that 
reduction in costs and time in the a n a l y t i c a l operations may be 
possible without s a c r i f i c i n g information, since a less precise 
procedure would suffice under these circumstances. 

Glossary of Terms Used i n Sampling 

Bulk sampling. Sampling of a material that does not consist of 
discrete, i d e n t i f i a b l e , constant units, but rather of 
arbitrary, irregular units. 
Gross sample. (Also called bulk sample, l o t sample.) One or 
more increments of material taken from a larger quantity (lot) 
of material for assay or record purposes. 
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22 T R A C E R E S I D U E A N A L Y S I S 

Homogeneity. The degree to which a property or substance i s 
randomly distributed throughout a material. Homogeneity 
depends on the size of the units under consideration. Thus a 
mixture of two minerals may be inhomogeneous at the molecular 
or atomic lev e l but homogeneous at the particulate l e v e l . 
Increment. An individual portion of material collected by a 
single operation of a sampling device, from parts of a l o t 
separated in time or space. Increments may be either tested 
i n d i v i d u a l l y or combined (composited) and tested as a unit. 
Individuals. Conceivable constituent parts of the population. 
Laboratory sample. A sample, intended for testing or analysis, 
prepared from a gross sample or otherwise obtained. The 
laboratory sample must retain the composition of the gross 
sample. Often reduction i n par t i c l e size i s necessary in the 
course of reducing the quantity. 
Lot. A quantity of bulk material of similar composition whose 
properties are under study. 
Population. A generic term denoting any f i n i t e or i n f i n i t e 
c o l l e c t i o n of individual things, objects, or events in the 
broadest concept; an aggregate determined by some property that 
distinguishes things that do and do not belong. 
Reduction. The process of preparing one or more subsamples 
from a sample. 
Sample. A portion of a population or l o t . I t may consist of 
an individual or groups of individuals. 
Segment. A s p e c i f i c a l l y demarked portion of a l o t , either 
actual or hypothetical. 
Strata. Segments of a l o t that may vary with respect to the 
property under study. 
Subsample. A portion taken from a sample. A laboratory sample 
may be a subsample of a gross sample; s i m i l a r l y , a test portion 
may be a subsample of a laboratory sample. 
Test portion. (Also called specimen, test specimen, test unit, 
aliquot.) That quantity of material of proper size for 
measurement of the property of int e r e s t . Test portions may be 
taken from the gross sample d i r e c t l y , but often preliminary 
operations such as mixing or further reduction in pa r t i c l e size 
are necessary. 
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3 
Sampling and Variance in Measurements 
of Trifluralin Disappearance from a Field Soil 

A. W. TAYLOR, J. H. CARO, H. P. FREEMAN, and B. C. TURNER 

Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of 
Agriculture, Beltsville, MD 20705 

Trifluralin was applied to separate field plots either 
as a spray of emulsifiable concentrate (EC) or by 
spreading a granular formulation (GF). Both 
formulations were incorporated and mixed to the 7.5 cm 
depth. Soil concentrations were measured by eightfold 
analysis of five field samples obtained from each plot 
(40 analyses per plot): elaborate precautions were 
taken to ensure complete mixing and random subsampling 
in the laboratory. Coefficients of variation were 10% 
in the EC data and 38% in the GF. Analysis of 
variance showed that the difference reflected 
irregular distribution of the herbicide in the 
laboratory subsamples due to localized high 
concentrations at granule sites. In later samplings 
at about 20 day intervals, this irregularity was 
reduced as the granules became mixed with the soil. 
Regression analysis indicated a 50% disappearance time 
of 81 days on the EC plot and 106 days on the GF, but 
this difference was not significant at the 90% 
probability level. Regression of a l l data from both 
plots gave a 50% disappearance time of 91 days with a 
90% probability that the true value lay between 79 and 
108 days. The implications of these observations in 
experimental design and sampling strategies in field 
studies and environmental work are discussed. 

The work reported i n this paper was part of a larger project whose 
p r i n c i p a l objective was to measure the rate of v o l a t i l i z a t i o n of 
the herbicide t r i f l u r a l i n to the atmosphere from a f i e l d s o i l 
af ter surface appl icat ion and incorporation to a depth of 7.5cm 
by c u l t i v a t i o n with a disc harrow. In th is experiment i t was 
necessary to measure as accurately as possible the amount of the 
t r i f l u r a l i n residue i n the s o i l on several days during the growing 
season and to calculate the rate of disappearance of the 

This chapter not subject to U.S. copyright. 
Published 1985, American Chemical Society 
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26 TRACE RESIDUE ANALYSIS 

residues. Two treatments were compared, one i n which the 
herbicide was applied as a spray of water-based emulsif iable 
concentrate (EC) and a second in which i t was spread as a dry 
granular formulation (GF). Both plots were otherwise treated and 
managed i d e n t i c a l l y . 

E a r l i e r invest igat ions of the problems of measurement and 
sampling of pest ic ide residues in f i e l d s o i l s (1,2) have shown 
that a detai led understanding of the s igni f icance of such data 
requires a sampling and a n a l y t i c a l scheme designed to measure the 
variance of the o r i g i n a l data and permit estimates of the degree 
of confidence that can be placed on the f i n a l r e s u l t s . This paper 
discusses the s t a t i s t i c a l analysis and experimental s igni f icance 
of the resul ts obtained with the sampling scheme described below, 
which was i n i t i a l l y designed to obtain the maximum information 
avai lable that could be obtained with the resources avai lable for 
this part of the work. Detai ls of the work on t r i f l u r a l i n 
v o l a t i l i z a t i o n w i l l be published elsewhere. 

Experimental Design and Procedures 

F i e l d Layout and Management. The experiment was done on a l e v e l 
f i e l d of about 5 hectares on the Harford Teaching and Research 
Center of Corne l l Universi ty at Harford, N.Y. The s o i l was a 
Howard grave l ly loam with e s sent ia l ly uniform charac ter i s t i c s over 
the experimental area. The two formulations were applied to 
separate rectangular experimental plots o f 2.97 hectares each, 
(244 x 122m) located side by side with an untreated 3m s t r i p 
between them on the long axes. 

The granular treatment was applied on May 2nd, 1974 by 
spreading Treflan 5G commercial formulation from a conventional 
gravity fed spreader at a nominal rate of 0.7 kg/h of active 
ingredient . On May 8th, the emulsion-plot received 0.66 kg/h 
t r i f l u r a l i n as a spray of Tref lan 4EC emulsif iable concentrate 
d i luted with water according to commercial prac t i ce . (Note: 
Mention of a proprietary product i s for purposes of i d e n t i f i c a t i o n 
only and does not constitute endorsement by the U.S. Department of 
Agricul ture over products of a s imi lar nature not mentioned). 
This appl icat ion was made between 0700 and 0830 a.m. in cool (a ir 
temp., 10°C) c lear and windless weather. Both granular and 
emulsion formulations were incorporated to the 7.5cm depth with a 
disc cu l t i va tor within 15 minutes o f app l i ca t ion . A second 
c u l t i v a t i o n to the same depth, but at r ight angles to the f i r s t , 
was completed within 2-3 hours. On May 20th both plots were 
spring-tooth harrowed for seed-bed preparation for soybean 
planting on the same day. The only subsequent s o i l disturbance 
was a row c u l t i v a t i o n in late June to contro l a severe infes tat ion 
of quack-grass: contro l of broadleaf weeds was es sent ia l ly 
complete with the t r i f l u r a l i n . 

The f i r s t samples were taken from the GF plot on May 2nd, 4 
hours after appl icat ion and from the EC plot on May 8th, 7 hours 
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3. TAYLOR ET AL. Measurements of Trifluralin Disappearance 27 

after app l i ca t ion . Subsequent samples were taken from both plots 
on May 21st, June 25th, July 3 0 t h and September 24th. On the GF 
plot these correspond to sampling times of 0.16, 18.8, 53, 88 and 
144 days, and 0.29, 13 .3, 48, 83 and 139 days on the EC p l o t . 

Sampling Procedure. A set of twenty-five sampling points was 
marked out on each plot on a rectangular 5 x 5 g r i d . The distance 
between points was thus 40.5m on the long axis of the g r i d and 
20.2m between rows of points . Each sampling point was permanently 
ident i f i ed by number. 

On each sampling, five f i e l d samples were taken from each plot 
by combining s o i l samples from each of f ive sampling points . The 
f ive points combined in each sample were selected each day from a 
table of random numbers. Since a new se lect ion of points was made 
on each day the i n d i v i d u a l f i e l d samples numbered I through V i n 
the Tables do not represent s o i l taken from the same points on the 
f i e l d . Each f i e l d sample can be regarded as composed c f s o i l from 
a randomly chosen set of sampling points that equally represent 
the surface of the ent ire f i e l d p l o t . 

The sample taken from each point was obtained by combining 16 
separate cores, a l l within an area of 50 x 50 cm and a l l taken 
with the same spec ia l ly designed corer with an i n t e r n a l diameter 
of 4.4cm: a l l cores were taken to 15.0cm depth. Each f i e l d sample 
thus included s o i l taken from 80 cores representing a composite 
block of s o i l o f 0.122m2 in f i e l d area and 15.0 cm deep. On 
removal from the f i e l d th i s sample was weighed and mixed by 
tumbling for 5 minutes i n a power driven portable concrete mixer. 
The whole sample, usual ly weighing between 20 and 25kg, was then 
divided and sub-divided by four passages through a r i f f l e r to 
obtain a representative f i e l d subsample of about 2.5kg weight for 
laboratory ana lys i s . These subsamples were returned to the 
laboratory within 12 hours and stored at a temperature below 
1 0 ° c u n t i l analyzed. 

On each sampling day the precise posit ions from which the 
cores were taken was marked with a stake. On the next day the 
cores were taken from a s imi lar area adjacent to the f i r s t so that 
a l l the f ive sample s i t es at each point were in a l ine along the 
long axis of the f i e l d . This was also the d i rec t ion in which the 
sprayer and spreader moved during app l i ca t ion . 

A n a l y t i c a l Procedure. After thawing, each f i e l d sample was 
immediately divided into 4 quarters and subsamples of 
approximately 100g of moist s o i l taken from each for ana lys i s . A 
s i n g l e subsample was oven d r i e d at 105 °C ove r n i g h t to measure 
the water content. 

Each a n a l y t i c a l sample was shaken for 30 minutes i n 250ml of 
a n a l y t i c a l grade benezene containing 80ml of isopropanol. After 
s e t t l i n g , an a l iquot of the extractant was washed with d i s t i l l e d 
water to remove the isopropanol and the t r i f l u r a l i n concentration 
measured by d i rec t in jec t ion into a gas chromatograph equipped 
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28 T R A C E R E S I D U E A N A L Y S I S 

with an electron capture detector. Testing with samples spiked at 
the 0.1ppm l eve l indicated that t r i f l u r a l i n recoveries with th is 
procedure were consistent ly 95 to 100$. The l imi t of detection of 
t r i f l u r a l i n i n s o i l was less than 10 ppb. S o i l concentrations 
were never less than 50 times greater than t h i s . 

Four repl icates from each f i e l d sample were analyzed for 
t r i f l u r a l i n content, except for those from the f i r s t day when 
eight repl icates were analyzed in order to obtain more extensive 
data for the i n i t i a l s t a t i s t i c a l ana lys i s . The resul ts obtained 
may therefore be classed as a two-stage h i e r a r c h i c a l sampling 
s tructure , with four (or eight) a n a l y t i c a l determinations on each 
of f ive f i e l d samples each of which can be regarded as providing 
independent estimate of the t r i f l u r a l i n content i n the ent ire 
f i e l d s o i l . Since the amount of t r i f l u r a l i n in each of these 
f i e l d samples can be regarded as that i n a representative 
composite block of s o i l of 0.122m2 area, a l l the data can be 
expressed as milligrams of herbicide per square meter of s o i l area 
in the f i e l d . 

Results 

The resul t s of the eight analyses of the f ive f i e l d samples taken 
from both f i e l d plots on the day of appl icat ion are presented i n 
Table I together with means and standard deviat ions . The values 
of the Grand Mean and i t s standard deviation were calculated from 
the sum and variance of the 40 i n d i v i d u a l samples. The grand mean 
of the EC data (Table I) has a coef f ic ient of var ia t ion of 10%. 
Comparison with e a r l i e r experience (1_) suggests that th is 
approaches the best prec is ion that can be expected in f i e l d 
experiments of th i s type. Inspection of the standard deviations 
of the ind iv idua l sample means reveals that (expressed as C.V's) 
they range from 2.8% to 4.2%, indicat ing a high degree of 
reproduc ib i l i ty i n the laboratory subsampling and a n a l y t i c a l 
procedures. A detai led analysis of variance (3.) gives a value of 
14.6 as the component of variance between f i e l d samples in 
comparison with 2.0 for the component between laboratory 
subsamples. This shows that in the EC plot the dominant source of 
uncertainty i s due to var ia t ions between the f ive f i e l d samples 
and not due to var iat ions i n the laboratory subsamples or i n the 
actual chemical analyses. A s imi lar conclusion can be drawn by 
inspection of the standard deviations presented in Table I . 

The samples from the plot receiving the granulated formulation 
(Table I) revealed a d i f ferent s i t u a t i o n . The o v e r a l l v a r i a b i l i t y 
was much larger with a coef f i c ient of var ia t ion of 39%, with 
increased v a r i a b i l i t y both between and within the f ive samples. 
Analysis of variance gave components of 140 between f i e l d samples, 
and 264 between laboratory subsamples. Since the a n a l y t i c a l 
procedures were i d e n t i c a l with those used in the EC plot samples, 
where reproduc ib i l i t y was good, these resul ts c l e a r l y indicate a 
much greater i r r e g u l a r i t y of the d i s t r i b u t i o n of the herbicide in 
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3. TAYLOR ET AL. Measurements of Trifluralin Disappearance 29 

the GF plot samples. This i r r e g u l a r i t y i n the i n d i v i d u a l analyses 
themselves probably re f l ec t s the number of granules present in the 
100-gram subsamples withdrawn for analyses. The granular 
formulation consisted of i r regu lar grains between 0.6 and 1.0mm 
diameter which probably survived as i n d i v i d u a l units through the 
mixing and r i f f l i n g procedure in the sample preparation. 

Table I . Replicate analyses of t r i f l u r a l i n content of f i e l d 
samples of s o i l receiving emulsif iable concentrate and 
granular formulation. (Samples taken on day of 
appl i ca t ion . ) 

T r i f l u r a l i n Content (mg/m2) 

Emulsion 
Sample 

I I I I I I IV V 
37 39 34 35 46 
37 37 34 35 47 
40 41 35 35 44 
37 39 37 35 46 
37 39 37 39 44 
35 37 34 37 44 
35 41 35 37 44 
37 41 36 37 44 
36.9 39 .3 35.3 36.3 44.9 
1.55 1.67 1.28 1.49 1.25 

Granular 
Sample 

I I I I I I IV V 
97 46 22 39 52 
61 36 82 50 57 
58 22 46 33 40 
50 17 53 49 48 
85 75 32 37 45 
64 47 48 40 50 
55 35 43 67 39 

107 20 43 44 60 
72.1 37.3 46.1 44.9 48".9 
21.3 19.1 17.5 10.7 7.5 

Grand Mean and S.D. (of a l l samples) 
38.5 + 3.80 49.9 + 19.4 

Analysis of Variance 
Component of variance 
Between samples 14.6 140 
Within samples 2.0 264 

In terms of confidence l imi t s the two Grand Means can be 
written as 38.5 + 6.4 mg/m2 for the EC plot and 49.9 + 32.7 mg/m2 

for the GF plot at the 90% l e v e l . This statement emphasizes the 
extent to which sampling v a r i a b i l i t y can affect the confidence 
with which an a n a l y t i c a l resul t i s known. Unless the sampling 
program i s designed to measure and ident i fy the source of the 
v a r i a b i l i t y much e f fort towards improvement of the qual i ty of the 
chemical analyses can be wasted (4). The d i f f i c u l t y of improving 
the sampling procedures to reduce the v a r i a b i l i t y i s i l l u s t r a t e d 
by ca lcu la t ion of the number of samples that would have to be 
analyzed to obtain estimates known to have an uncertainty less 
than 10% at the 90% confidence l e v e l (4). This would require 106 
analyses from the EC plot and 2140 from the GF. Both sample s izes 
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30 T R A C E R E S I D U E A N A L Y S I S 

were u n r e a l i s t i c in terms of the resources ava i lab le for the 
present work. The only v iable course was therefore to perform the 
maximum number of analyses possible and to subject the resul ts to 
a f u l l s t a t i s t i c a l analysis to quantify the uncertainty. 

Change in V a r i a b i l i t y With Time 

Table II contains the mean values of the quadruplicate analyses of 
each of the f ive samples taken from the EC plot on days 13, 48, 83 
and 139, together with standard deviations and the resul t s of the 
analyses of variance. These may be compared with the data from the 
GF plot given i n Table I I I . 

The resul ts i n Table II show that , as i n the data of Table I , 
the differences between the f ive f i e l d samples from the EC plot 
remained the main source of var ia t ion in the data throughout the 
season: this i s s t r i k i n g l y evident on the 139th day, where the 
variance between samples was 10.8 while the average value for the 
chemical analyses within samples was only 0.4. Thus, although 
there was a decl ine i n t r i f l u r a l i n content of the samples with 
time there was no consistent evidence of r ed i s t r ibut ion of the 
herbicide to give a more uniform content of the s o i l , and the 
f i e l d sampling was always the p r i n c i p a l source of uncertainty. I t 
may be noted that since the choice of sampling points i n the f i e l d 
was re-randomized each day, a par t i cu lar number (I through V) does 
not represent the same set of points: temporal changes in mean 
values (or standard deviations) associated with each sample number 
do not therefore have phys ica l meaning. 

Table I I . Mean values (with standard deviations) of four 
t r i f l u r a l i n analyses on f ive f i e l d samples of s o i l 
receiving emulsif iable concentrate, sampled from 13 to 
139 days after app l i ca t ion . 

T r i f l u r a l i n Content (mg/m*) 

Age(days) 13 48 83 139 
Sample Mean SD Mean SD Mean SD Mean SD 

I 38 1.4 23 1.7 17 1.3 8.3 0.2 
II 29 4.2 21 1.0 24 0.5 13.0 0.8 

III 27 0.5 16 1.0 23 2.1 7.7 0.6 
IV 29 2.6 30 1.4 17 1.4 10.0 0.7 

V 33 1.0 32 0.6 2.0 4.3 16.0 0.6 

Mean 31.2 24.4 20.2 11.0 
S.D. 4.4 6.6 3.3 3.5 
Variance 
Between 17 41 9.4 10.8 
Within 5.6 1.4 5.3 0.4 
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3. T A Y L O R ET A L . Measurements of Trifluralin Disappearance 31 

The data for the samples from the GF plot presented in Table 
III show a d i f ferent p i c ture . Although the v a r i a b i l i t y in these 
samples i s higher than that i n the EC plots throughout the season, 
the s i tuat ion found in the f i r s t sampling, where the dominant 
contribution to the variance was due to the i rregu lar d i s t r i b u t i o n 
of the herbicide within the laboratory samples did not pers i s t . 
On the eighteenth day the analysis of variance and the standard 
deviation presented in Table III show that the between samples 
var ia t ion was dominant and remained so throughout the season. 
This re f l ec t s the breakdown of the t r i f l u r a l i n granules and some 
r e d i s t r i b u t i o n throughout the s o i l . How far th is represents 
actual herbicide movement in the s o i l i s uncertain because i t may 
merely re f l ec t a decay of the strength or the i n t e g r i t y of 
i n d i v i d u a l granules so that they became more readi ly mixed 
throughout the bulk of the f i e l d s o i l sample as th is was s t i r r e d 
during the vigorous r o l l i n g action i n the concrete mixer. 

The analyses of variance summarized i n Tables II and III show 
that the i rregu lar d i s t r i b u t i o n of the t r i f l u r a l i n contributed to 
the higher o v e r a l l v a r i a b i l i t y in the GF plot throughout the 
experiment, even though the var iat ions between the means of the 
f i e l d samples of both emulsion and granular plots were not 
d i s - s i m i l a r (coef f ic ients of var ia t ion of 32% and 28% 
respectively) after about 140 days. 

Table I I I . Mean values (with standard deviations) of four 
t r i f l u r a l i n analyses on f ive f i e l d samples of s o i l 
receiving granular formulation, sampled from 18 to 
144 days a p p l i c a t i o n . 

T r i f l u r a l i n Content (mg/m2) 

Age(days) 18 53 88 144 
Sample Mean SD Mean SD Mean SD Mean SD 

I 26 4.8 23 5.0 27 1.7 17 5.2 
II 56 7.3 43 6.2 30 3.5 22 1.7 

III 56 9.7 45 6.2 16 2.5 19 1.4 
IV 26 2.6 19 2.4 29 3.0 11 0.8 

V 31 6.6 32 1.9 23 2.5 25 1.0 

Mean 39 .0 32 .4 25.0 18.8 
S.D. 15.7 11.6 5.7 5.3 
Variance 
Between 208 134 29 25 
Within 51 22 7.3 6.7 

Estimation of T r i f l u r a l i n Disappearance Rate. The t r i f l u r a l i n 
disappearance rate can be estimated by regression analysis in two 
ways, either by using the f ive i n d i v i d u a l sample means obtained 
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32 T R A C E R E S I D U E A N A L Y S I S 

each day, or from the values of the grand means of a l l the data 
from each day. In p r a c t i c a l terms th is represents the use of the 
resu l t s from a l l f ive separate samples obtained each day or a 
s ingle determination that would have been obtained i f a l l f ive 
were bulked and mixed before ana lys i s . The l a t t er proceedure i s 
one that could be adopted to reduce the number and cost of 
chemical analyses. S t a t i s t i c a l l y the difference between these 
approaches i s that in the f i r s t the f i n a l estimate of the 
uncertainty in the regression includes the whole variance (except 
that due to a n a l y t i c a l var ia t ion within samples), while the second 
re f l ec t s only the deviation of the d a i l y grand means from the 
regression l i n e . Comparison of the two ca lculat ions reveals the 
amount of information lost i n the second procedure. 

Comparison of the regressions based on a simple l inear 
equation P = ?^ - c . t (where Pĵ  i s the i n i t i a l t r i f l u r a l i n 
concentration, t i s time i n days and c i s a constant)with 
regression upon a logarithmic curve, log P = log P^ - c f . t , 
showed that the l a t t e r equation gave s l i g h t l y better corre la t ion 
coef f i c ients i n both cases. The data were therefore analyzed in 
terms of the logarithmic equation. It must be emphasizedthat th is 
does not imply that the t r i f l u r a l i n disappearance followed 
f i r s t - o r d e r k i n e t i c s , but only that the data were best described 
by the logarithmic equation. The use of more complex exponential 
decay curves was explored but no improvement in corre la t ion 
coef f ic ients was found. The use of such curves would introduce 
unnecessary complexities into the analys i s . I t may also be noted 
that regression analysis using a l l the data points instead of 
those from sample means gave no meaningful improvement. 

For s i m p l i c i t y , both sets of data were normalized by 
sett ing the i n i t i a l t r i f l u r a l i n concentration (?^) at 100%. 
This normalization was done by performing a regression on the raw 
data to determine the best value of the intercept at t = 0, and 
then expressing a l l the analyses as a percentage fract ion of th is 

Table IV. Regression and Correlat ion Coeff ic ients (with Confidence 
Limits) for decrease in t r i f l u r a l i n content of f i e l d 
s o i l for 140 days af ter appl i ca t ion , based upon the 
equalion log P = log (100%) - c f . t . 

c» (+) confidence l imi t s r 

Emulsion 95% 90% 80% 
Daily means 0.0037 0.0006 0.0005 0.0004 0.992 
Sample means 0.0038 0.0008 0.0007 0.0005 0.909 

Granu lar 

Dai ly means 0.0028 0.0005 0.0004 0.0003 0.988 
Sample means 0.0028 0.0010 0.0009 0.0007 0.745 
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3. TAYLOR ET AL. Measurements of Trifluralin Disappearance 33 

value. These intercepts were 37 mg/m2 for the emulsion and 44 
mg/m2 for the granular . This normalization reduces the data to 
a form where the two sets can be eas i ly compared. 

The resul ts of the regressions of the normalized data are 
presented in Table IV. In both cases the values of the decay 
constant are not affected when the f u l l set of sample means are 
substituted for the da i ly grand means. The values of the 
regression coef f ic ients however decrease considerably, r e f l ec t ing 
the larger scatter of the ind iv idua l sample r e s u l t s . The values 
of the confidence l imi t s to be assigned to the decay constant 
representing the l imi t s within which the "true" value can be 
expected to l i e at the 95, 90 and 80% p r o b a b i l i t i e s are also wider 
for the ind iv idua l sample data. These differences i l l u s t r a t e very 
c l e a r l y how an a r t i f i c i a l increase in the confidence to be placed 
upon a resul t can be obtained by the use of averaged figures that 
reject inherent v a r i a b i l i t y in the o r i g i n a l data. This i s 
p a r t i c u l a r l y important in the present case because the most 
s t r i k i n g feature of Table IV i s the difference between the decay 
constants of the two formulations. Presented in terms of 
"hal f - l ives" these represent 81 days for the emulsion and 106 days 
for the granular formulation. I f r e a l , the difference of 25 days 
represents an important effect of formulation upon the 
environmental behavior of t r i f l u r a l i n . It i s essent ia l to enquire 
further into the confidence that can be placed in th i s 
observation. 

An analysis of covariance (3.) using the da i ly grand means gave 
an "F" value of 5.37 with 1/6 degrees of freedom: th is indicated 
that the "c" values are s i g n i f i c a n t l y d i f ferent at the 90% but not 
the 95% probabi l i ty l e v e l . A s imi lar analysis using the sample 
means however gives F = 2.307 at 1/47 degrees of freedom, 
indicat ing s ignif icance at 75% but not at 90% p r o b a b i l i t y . Since 
the analysis using the sample means takes into account the f u l l 
variance present in the o r i g i n a l data, and includes a far higher 
number of degrees of freedom, i t represents a much more c r i t i c a l 
tes t . I t must be concluded that at the 90% l eve l there i s no 
s ign i f i cant difference between the two estimates of the 
disappearance rates of the two t r i f l u r a l i n formulations. 

As a f i n a l r e s u l t , a s ingle regression using the sample means 
for both emulsion and granulated plots gives the overa l l 
regression equation log P = 2.00 - 0.0033 (+ 0.0005).t with 
confidence l imi t s of 90% probab i l i t y : this represents a best 
estimate for the h a l f l i f e of 91 days, with a 90% confidence that 
the "true" value i s between 79 and 108 days. In physical terms 
this represents the decay rate of t r i f l u r a l i n in Harford s i l t loam 
during the growing season in a cool and rather wet summer in 
upstate New York: since the decay rate w i l l change r a d i c a l l y 
during the severe winter conditions t y p i c a l of th is locat ion , th is 
estimate cannot be extrapolated to obtain an estimate of the 
disappearance rate over a much more extended time period. 
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34 T R A C E R E S I D U E A N A L Y S I S 

Discussion 

The resul ts presented and discussed in th i s paper are an example 
of how i r r e g u l a r i t i e s i n herbicide d i s t r i b u t i o n in a f i e l d s o i l 
cause sampling var iat ions so great that they severely l imi t our 
confidence in how wel l we can measure the amount of herbicide 
present i n the f i e l d at any time and i t s rate of disappearance. 
Comparison of the resul ts from the two plots in the experiment 
reveals that th is i r r e g u l a r i t y of d i s t r i b u t i o n can come from 
di f ferent causes or combinations of causes. The most uniform, but 
far from perfect , d i s t r i b u t i o n was observed after the herbicide 
was applied as a spray of water-based emulsion to the s o i l surface 
followed by a double t i l l a g e to incorporate the herbicide into the 
s o i l Here the i r r e g u l a r i t y probably resul ts from i r r e g u l a r i t i e s 
in the o r i g i n a l spray pattern coupled with incomplete and 
i rregu lar mixing into the s o i l (5): other work with persistent 
s o i l insect ic ides applied in the same way (1_) has revealed s imi lar 
i r r e g u l a r i t i e s i n d i s t r i b u t i o n with large var iat ions in 
insec t ic ide contents o f i n d i v i d u a l cores taken 35 to 40cm apart . 

The results a lso show much greater v a r i a b i l i t y in a plot 
receiving a surface appl ica t ion of granules 0.6 to 1mm i n diameter 
followed by incorporat ion. Even through there was some 
improvement with time as the granules decayed and were more eas i ly 
mixed throughout the whole s o i l during sample preparation, the 
v a r i a b i l i t y in the data was much higher owing to the superimposed 
i r r e g u l a r i t y of d i s t r i b u t i o n of the herbicide in the laboratory 
subsamples. 

These differences emphasize the advantages i n sampling 
strategies which permit ca lcu la t ion of confidence l imi t s for the 
data obtained and the i d e n t i f i c a t i o n of sources of e r r o r . With 
this information i t i s then possible to recognize that there i s a 
l imi t to how wel l the herbicide content o f the s o i l in the f i e l d 
can be measured i n pract ice and that increased e f for t may only 
lead to a better measurement of the uncertainty of the estimate 
rather than the number i t s e l f . Attempts to increase the prec i s ion 
of the a n a l y t i c a l procedure may also be i rre levant and the most 
important issue w i l l be to design a sampling procedure that w i l l 
represent the most e f fect ive employment of the ava i lab le 
resources. Following the procedure of Snedecor and Cochran (3.) i t 
may be estimated that the variance in the f i n a l estimate of the 
t r i f l u r a l i n content of the f i e l d s o i l i n the f i r s t day could be 
reduced by about h a l f i n the EC plot and by about four i n the GF 
plot i f , on each sampling, twenty-five separate samples were taken 
and each analyzed twice. This would represent a considerably 
increased cost, increasing the number of determinations from forty 
to f i f t y and, more importantly, increasing f i v e - f o l d the number of 
sampling operations such as mixing, drying and weighing. Whether 
th is i s j u s t i f i a b l e depends upon the objectives of the 
experiment. In the present case this objective was to estimate 
the disappearance rate of t r i f l u r a l i n applied in a regular 
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3. TAYLOR ET AL. Measurements of Trifluralin Disappearance 35 

commercial manner to a large experimental f i e l d . When the resu l t s 
obtained were compared with data from the remainder of the project 
i t was c lear that th i s objective was achieved within the framework 
of the overa l l project . Al locat ion of increased resources to 
reduce the uncertainty in the f i n a l re su l t could not therefore 
have been j u s t i f i e d . I f , however, the objective had been to 
measure the disappearance rate of the t r i f l u r a l i n with the 
greatest prec is ion possible , i t i s c l ear that an ent i re ly 
d i f ferent experimental program, with intensive sampling of smaller 
and more care fu l ly control led experimental plots would have been 
appropriate. 

Even in more precise measurements i t i s however important that 
the sampling program be designed to give an estimate of the 
confidence that can be placed upon the resu l t obtained. Not only 
does the recognit ion and measurement of the existence of 
v a r i a b i l i t y and uncertainty in f i e l d measurements add to the ir 
authentic i ty and value, but i t i s an essent ia l element i n the 
competent design and management of an experimental program. This 
becomes important not only in the choice of a sampling protocol , 
but i n the choice of a sampling schedule. Without measurement of 
the standard deviation resources may be wasted by too frequent 
samplings i f the i n t e r v a l between them i s not long enough to allow 
a s t a t i s t i c a l l y measurable change to have taken place . The choice 
of sampling schedules w i l l of course require some preliminary 
estimate of the disappearance rate , and sampling at shorter 
intervals w i l l be es sent ia l for more unstable materia ls . A 
mult iple range test of the resul ts i n the present case reveal that 
the differences between samplings were s i g n i f i c a n t at the 5% l e v e l 
except between those of the 53rd and 88th days on the EC p l o t . In 
other work with much more persistent materials (6,7) much longer 
interva ls may be required to f ind s ign i f i cant di f ferences . 
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4 
Processing Outliers in Statistical Data 

JOHANN A. MÜHLBAUER 

Continental Gummiwerke AG, Postfach 169, D-3000 Hannover 21, West Germany 

This paper presents a method to decide the handling 
of seemingly inconsistent data (ou t l ie rs ) . The 
univariate and multivariate methods recommended are 
strongly based on s ta t i s t i cs and the experience of 
the author in using them. 

What does one do with seemingly inconsistent data? Almost every
one concerned with the analysis of experimental data has been 
confronted at one time or another with t h i s problem. Figure l a 
gives a graphical representation of t h i s subject. There i s a set 
of observations or objects of observation which seem to be "incon
s i s t e n t " with the main body of the data. Such suspicious observa
tions w i l l be referred to as o u t l i e r s throughout t h i s paper. 

C e r t a i n l y the r e s u l t s of an i n v e s t i g a t i o n can be influenced 
to a high degree by such outlying observations. How does one 
handle these observations? 

Basic Philosophy 

There are four main strategies concerning the processing of out
l i e r s . Figures l b to le give a graphical i n t e r p r e t a t i o n of these 
s t r a t e g i e s • 

Rejection. The f i r s t strategy i s to remove the suspicious datum 
from the data. Then, the analysis and the conclusions to be drawn 
are based only on the remaining values. This c e r t a i n l y i s the way 
to deal with o u t l i e r s which r e s u l t from human e r r o r s , gross errors 
of measurement or something s i m i l a r (Figure l b ) . 

Incorporation. Incorporation of the suspicious observation i n the 
analysis i s i n some ways the opposite of our f i r s t strategy. This 

0097-6156/ 85/0284-0037S06.00/ 0 
© 1985 American Chemical Society 

 P
ub

lic
at

io
n 

D
at

e:
 J

ul
y 

15
, 1

98
5 

| d
oi

: 1
0.

10
21

/b
k-

19
85

-0
28

4.
ch

00
4



38 T R A C E R E S I D U E A N A L Y S I S 

type of action w i l l sometimes r e s u l t i n a t o t a l l y d i f f e r e n t view 
of our i n i t i a l problem (Figure l c ) . 

Concentration. Neglecting a l l the nonsuspicious values and con
centrating the further analysis on the outlying data i s a strategy 
which i s sometimes very useful i n process optimization, q u a l i t y 
assurance or archeology (Figure I d ) . 

Accommodation. The philosophy of t h i s strategy i s to include the 
outlying observations i n the a n a l y s i s . Methods are then used to 
define the f i n a l actions which are only s l i g h t l y influenced by the 
presence of o u t l i e r s (Figure l e ) . Such s t a t i s t i c a l methods are 
developed under the name of "robust s t a t i s t i c s . " 

Influencing Factors 

The choice of the strategy to be used depends on the p a r t i c u l a r 
s i t u a t i o n . The choice of the strategy might also depend on the 
a b i l i t y to answer the question: Are the o u t l i e r s r e a l l y i n c o n s i s 
tent with the remainder of the data? Unfortunately, not only the 
f i n a l a c t ion but also the method by which we w i l l define whether 
or not an o u t l i e r i s r e a l l y inconsistent depends on the s i t u a t i o n . 

There are several d i f f e r e n t but interdependent factors which 
w i l l influence s i g n i f i c a n t l y the whole process of handling out
l i e r s . One must consider the d i s t i n c t i o n s 

- between det e r m i n i s t i c and s t a t i s t i c a l (or rather unknown) 
causes of o u t l i e r s , 

- between univariate or m u l t i v a r i a t e data s e t s , i . e . , the 
nature of the data, 

- between d i f f e r e n t s p e c i f i c p r o b a b i l i t y models l i k e the 
normal or the exponential d i s t r i b u t i o n , 

- between d i f f e r e n t forms of s t a t i s t i c a l analysis i n which 
the o u t l i e r s have to be encountered, l i k e ANOVA, random 
sampling and so on, 

- between single or multiple o u t l i e r s , and, 
- most fundamentally, between the d i f f e r e n t aims and pur

poses that one may have i n studying o u t l i e r s . 

The Decision Procedure 

Figures 2 to 4 describe the recommended procedure for processing 
o u t l i e r s . These flowcharts could be used also to create a com
puter program. The explanation of some of the terms used i n these 
charts f o l l o w s : 

Automatic Processing of Standard Data. The main c h a r a c t e r i s t i c s 
of t h i s procedure are that the 

- data i s produced and processed r o u t i n e l y without any 
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MUHLBAUER Processing Outliers in Statistical Data 

Figure 1. Basic concepts 
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40 T R A C E R E S I D U E A N A L Y S I S 

I use "EXPLICIT" j 
| processing of | 
| outliers. | 

I 

I Have a thorough 
I look at the data. | 

Check them tor i 
I human errors or 1 

• mismeasurements.l 
I Proceed with the 
| cleared data. | 

1 

Use robust 
statistical methods 

A 

t .. 
I Consult D fellow ' 
| mathematician or use I 
1 references 

Univariate 
d a t a ? 

I 

Y E S /> C l a s s i c a l \ N Q 

• < samp-ling > J 
1 \ problem ? / I 

S Data \ 
supposed \ . 

\ to be ' 
V^no/mal ? / 

s 

[YES 
I 

. 1 . 

1 
1 Use Shapiro - Wilks 
I W - t e s t 
j consecutively to 
i clear the data. 
I Proceed as usual, 
I keep the 
I rejected data for 
1 supplementary 

studies. 

I 1 

Consult a fellow 
mathematician or use 

reference 
(2/) or U> 

Consult a f e l l o w 
mathematician or use 

references. 
(fe),(3:),(g),(3) 

Use AMT estimator 
tor location 

parameter.Use median 
of deviations from 
sample median for 

scale estimator 
r e < ( 1 ) 

Use robust 
regression by 
Andrews' RHO 
reference (^f) 

Figure 2. Decision flowchart part 1 
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MUHLBAUER Processing Outliers in Statistical Data 

' 2 N 

V 

A . 
/ Fitting a regression y 

\ line ? / 

/ Detect N 
ing 

inconsistent 
subsamples 

v only ? > 

. / A n y form of*\ 
the General \ 

Linear 
s Model to be 

\ used 

NO 

. ±_ 
I Use references I 
I {lY or ( fe) or I 
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j mathematician. | 

I 

, i — l 
I Use the classical 
I methods of 
J multiple comparisons 
| e.g. analysis 

A 
Are the ^ \ 

classical " \ YES 
C assumptions for > 

^ fitting regression/ 
\lines met 'iS 

_t___ 
1 Prepare the problem > 1 of v a r i a n c e . I P r e p a r e the p r o b l e m 

' I I I | s o that it may be s o l v e d j I by classic regression . 
I methods.If necessary | 
j contact a fe l low | 

themat 

T " 

j . _ 
In the context of the I 
General Linear Model I 
use the MAXIMUM 1 

ABSOLUTE STUDENTIZED 
RESIDUAL to detect , 
inconsistency. Keep in I 

mind that inconsistency | 
is RELATIVE to the 1 

assumed form of the j 
model. 

Use the MAXIMUM 
ABSOLUTE STUDENTIZED 
RESIDUAL to d e t e c t 
inconsistent values. 
Keep in mind that 

inconsistency is 
RELATIVE to the 

assumed form of the 
regression l i n e . 

Figure 3. Decision flowchart part 2 
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V 
I 
I 

X 

n NO y °°ta

t w 

< supposed to be 
^exponential ? 

/ Is there a 
/ transformation 

/ of the data into X 
normal or exponential form x 

\ which transforms / 
\ outliers into / 

\ outliers ? / 

\ YES 

s — 1 

, — J 

I Use Shapiro - Wilks 
| Exponential W - Test 
I consecutively to 
' clear the data. Keep 
I rejected data for 

supplementary 
I studies. For 
|jeferenc© see ( ^ ) | 

| Use robust 
, statistical methods. ' 

I 
i 

r — - 1 1 
| Test the | 
• transformed data. | 

Figure 4. Decis^ ilowchart part 3 
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4. MIJHLBAUER Processing Outliers in Statistical Data 43 

a n a l y s i s . The data i s not part of any s p e c i a l set or 
s p e c i a l environment. Sometimes the data i s c o l l e c t e d 
by automated devices and sometimes by independent 
service organizations. 

- r e s u l t s of the analysis are given only i n a summarized 
manner, such as a mean value, a standard dev i a t i o n , the 
slope of a regression l i n e , e t c . 

Univariate Data - M u l t i v a r i a t e Data. If one deals only with one 
vari a b l e under study, e.g., the concentration of a p a r t i c u l a r 
chemical i n the water of a r i v e r , t h i s i s a univariate problem. 
It i s univariate even when the variable under study depends on 
s e v e r a l other v a r i a b l e s such as temperature and l o c a t i o n of 
sampling• 

On the contrary, i f more then one variable i s under study 
simultaneously, t h i s would be c a l l e d a m u l t i v a r i a t e problem. An 
example of a mu l t i v a r i a t e problem i s i n determining water q u a l i t y 
using several analyzed v a r i a b l e s . 

C l a s s i c a l Sampling Problem. I f one i s only interested i n estimat
ing the l o c a t i o n and sca t t e r parameters of a population, t h i s i s a 
c l a s s i c a l sampling problem. 

C l a s s i c a l Assumptions for F i t t i n g Regression Lines. The dependent 
v a r i a b l e y might be expressed i n the following way: 

y = f ( x 1 , . . . , x n ; b 1,...,b n) + e 

In t h i s formula, f i s a function of the independent variables x^ 
to x and the unknown parameters b. to b which i s l i n e a r i n the 
parameters. The function n 

f ( x x , x 2 ; b x , b 2) = b x + b 2 x 2 

i s the c l a s s i c a l example, but the function 

f ( x l > x
2 ; b i , b 2) » b x s i n ( X ] L) + b 2 cos(x 2) 

i s a l s o p o s s i b l e . The e r r o r , e, i s supposed to be n o r m a l l y 
d i s t r i b u t e d w i t h mean 0 and standard d e v i a t i o n sigma. As a 
consequence t h i s means that the various measurements f o r y are 
( s t o c h a s t i c a l l y ) independent and the associated e's come from an 
i d e n t i c a l population (they have homoscedasticity or equal variance 
over the f u l l range)• 

Detecting Inconsistent Subsamples Only. A p o s i t i v e response to 
t h i s choice r e s u l t s from an a n a l y t i c a l problem involving an i n t e r -
laboratory comparison. The main i n t e r e s t i s to f i n d those labora
t o r i e s which produce inconsistent r e s u l t s . The r e s u l t s of each 
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44 TRACE RESIDUE ANALYSIS 

laboratory form a subsample. We can f i n d inconsistent subsamples 
and, therefore, inconsistent l a b o r a t o r i e s • 

Is There a Transformation of the Data i n t o Normal or Exponential 
Form? Many data sets are d i s t r i b u t e d according to p r o b a b i l i t y 
laws that are not the common normal d i s t r i b u t i o n law. Trans
formations are possible to convert such data sets to a normal or a 
nearly normal d i s t r i b u t i o n . I t i s evident that transforming the 
data i s only appropriate when the o r i g i n a l problem, for example, 
deciding whether two populations are d i f f e r e n t or not, i s not 
affected by the transformation. Several cases are possible. The 
following transformation, 

y = (t+3/8) 0 # 5 

where t = number of occurrences, w i l l transform Poisson data to 
normal. This next formation, 

y = arc s i n [(t+3/8)/(n+3/4)] 0 # 5 

where n = number of runs, w i l l transform binomial data to nearly 
normal. F i n a l l y , 

y = arc sinh [(t+3/8)(n -3 /4 ) ] 0 # 5 

w i l l transform negative binomial data to nearly normal. 

Calculation and Processing Procedures; the Processing Flow Chart 

There are various methods to process the data which are mentioned 
i n the flow chart. A l l of them are covered only by c i t a t i o n s . 
You w i l l f i n d the basic references i n Table I . 

Table I . Mathematical Methods Included i n the Flow Chart 

Method Reference Number 

AMT-estimator 1 
Shapiro Wilks W-test f o r normal data 2A 
Shapiro Wilks W-test f o r exponential data 2B 
Maximum studentized r e s i d u a l 2C 
Median of deviations from sample median 3 
Andrew's rho for robust regression 4 
C l a s s i c a l methods of multip l e comparisons 5 
M u l t i v a r i a t e methods 6-9 
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4. MUHLBAUER Processing Outliers in Statistical Data 45 

Example. For an example of the use of t h i s decision procedure, I 
w i l l use DATASET D (see Appendix I ) . The data set i s to be used 
to prepare a c a l i b r a t i o n graph i n chromatographic a n a l y s i s . I t 
contains a number of excessively high values i n the lower l e v e l s 
due to the presence of an overlapping contaminant. 

We s t a r t at the top of the Decision Flow Chart, part 1, shown 
i n Figure 2. 

Decisi o n diamond: Automatic processing of standard data? 
Since the answer i s "NO", the l e f t branch i s followed. Instruc
tions are met to have a thorough look at the data. There are 
several numbers which seem to be inco n s i s t e n t . However, with no 
ad d i t i o n a l data av a i l a b l e to t h i s author, I w i l l proceed. 

Decision diamond: Univariate data?; "YES" 

Decision diamond: C l a s s i c a l sampling problem? As the answer 
i s "NO", I r e s t a r t at the top of Figure 3. 

Decision diamond: F i t t i n g a regression l i n e ? "YES" 

Decision diamond: Are the c l a s s i c a l assumptions f or f i t t i n g 
regression l i n e s met? "NO" C l e a r l y the measurements at the d i f 
ferent x - l e v e l s d i f f e r i n t h e i r v a r i a b i l i t y . This can be shown by 
using the F-test. Another method i s outlined i n another chapter 
of t h i s text (10). In t h i s case weighted l e a s t squares w i l l r e
solve the problem of heteroscedasticity or unequal variance across 
the graph. I have chosen weights of 1, 1, 0.1, 0.01 and 0.01 f o r 
the r e s o l u t i o n of t h i s problem. 

Table I I . F i t t i n g DATASET D Data to the F i r s t Order Regression 
Model, y = a + bx 

Calculated Values C r i t i c a l Values 
Quantity t Max ASR t Max ASR 

Equation C o e f f i c i e n t s (1) 
a = 0.13 0.28 2.10 
b = 26.42 8.66 2.10 

Max ASR (2) 2.29 2.78 

(1) Correlation c o e f f i c i e n t for the regression f i t t i n g i s 0.90. 
(2) Max ASR occurs at x * 0.5, y =* 44.1. 
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46 TRACE RESIDUE ANALYSIS 

Decision command: Use the maximum absolute studentized re
si d u a l method to detect inconsistent values. 

When t h i s method i s used, Table I I shows the r e s u l t s when the 
regression model i s the normal f i r s t order l i n e a r model. Since 
the maximum absolute studentized r e s i d u a l (Max ASR) found, 2.29, 
was less than the c r i t i c a l value r e l a t i v e to t h i s model, 2.78, the 
conclusion i s that there are no inconsistent values. 

I t i s evident that the calculated t-value f or the constant 
value, a, i s less than the c r i t i c a l t-value. From the s t a t i s t i c a l 
viewpoint t h i s value, then, i s n e g l i g i b l e . The data can then be 
recalculated according to the f i r s t order model without a constant 
value. Table I I I shows the r e s u l t of t h i s r e c a l c u l a t i o n . There 
are no changes r e l a t i n g to the conclusions made concerning the 
author determination. 

Three c r i t i c a l points can be made i n t h i s a n a l y s i s . The 
f i r s t one i s located at the "thorough look" i n s t r u c t i o n . This 
examination i n r e a l i t y involves a c r i t i c a l analysis of the experi
mental protocol and the data produced from i t . For example, i t 
was quite evident i n c o l l e c t i n g the standards data from DATASET D 
that values were w e l l out of l i n e with previous determinations. 
See other DATASETS, e s p e c i a l l y DATASET E i n the Appendix, f or 
confirmation of t h i s idea. The second c r i t i c a l point i s at the 
"Preparation of the problem" i n s t r u c t i o n . In t h i s case hetero-
s c e d a s t i c i t y must be removed before submitting the data to regres
sion a n a l y s i s . Weighted l e a s t squares of several types (11) and 
power transformations (10) can be used. The t h i r d c r i t i c a l point 

Table I I I . F i t t i n g DATASET D Data to the F i r s t Order Regression 
Model, y = bx 

Calculated Values C r i t i c a l Values 
Quantity t Max ASR t Max ASR 

Equation C o e f f i c i e n t s (1) 
b = 27.14 17.2 2.09 

Max ASR (2) 2.36 2.78 

(1) Correlation c o e f f i c i e n t f o r the regression f i t t i n g i s 0.97. 
(2) Max ASR occurs at x = 0.5, y = 44.1. 
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4. MUHLBAUER Processing Outliers in Statistical Data 
47 

i s at the same i n s t r u c t i o n and i s the decision of the regression 
model used for the c a l i b r a t i o n graph. F i r s t order, higher order, 
and s p l i n e (12) methods can a l l be used for t h i s model. A l l these 
choices w i l l s i g n i f i c a n t l y influence the decision concerning the 
r e a l i t y of inconsistant values. 
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5 
The Many Dimensions of Detection in Chemical 
Analysis 
with Special Emphasis on the One-Dimensional Calibration Curve 

LLOYD A. CURRIE 

Center for Analytical Chemistry, National Bureau of Standards, Washington, DC 20234 

Simple detection decisions generally involve the 
comparison of scalar quantities (gross s ignal , blank). 
Conventional chromatography and spectrometry, on the 
other hand, involve one-dimensional variables (time, 
mass, wavelength, energy) where signal and baseline 
traces may be examined to decide whether a peak i s 
present at a given location. Linked techniques, such 
as GC-MS or two-parameter nuclear spectroscopy, raise 
the question of detection in two dimensions. F ina l ly , 
problems wherein a set of samples i s characterized by 
many independent chemical and physical observations 
raise the issue of multidimensional detection. A 
unified approach for all such problems is given by the 
statistical theory of hypothesis testing. Following a 
brief review of underlying assumptions and techniques 
for applying the theory to detection decisions and 
detection l i m i t s , primary attention i s given to a 
one-dimensional (reduced from two) problem involving 
the calibration curve and the pesticide, Fenvalerate. 
Other topics addressed include information-loss 
through faulty reporting (at trace levels) and its 
impact on regulatory issues, and chemometric quality 
assurance through standard interlaboratory test data 
sets. 

One of the fundamental performance character i s t i cs of any ana
l y t i c a l procedure i s the Limit of Detection. Just as with the 
imprecision (standard deviat ion) , with which i t i s intimately 
connected, the Detection Limit (L D ) i s undefined unless there 

This chapter not subject to U.S. copyright. 
Published 1985, American Chemical Society 
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50 TRACE RESIDUE ANALYSIS 

e x i s t s a f u l l y - s p e c i f i e d Chemical Measurement Process (CMP) i n a 
state of complete c o n t r o l . When these requirements are met, i t 
i s convenient to define Lp i n accordance with the s t a t i s t i c a l 
theory of Hypothesis Testing (1,2). Although t h i s theory i s 
well established there continues to be a great d i v e r s i t y of 
terminology and formulations which generate needless confusion 
i n our d i s c i p l i n e . S t i l l more serious i s i n t e r d i s c i p l i n a r y 
confusion, when analysts are c a l l e d upon to provide v a l i d 
methods and c r i t i c a l data f or regulatory, c l i n i c a l , or environ
mental decision-making (3). The objectives of t h i s review w i l l 
be to summarize the basic concepts of detection i n A n a l y t i c a l 
Chemistry, with the development following a stepwise increase i n 
dimensionality. Prime emphasis i s given to the assumptions 
which must be met, and to i l l u s t r a t i o n s having d i f f e r i n g 
dimensions. In keeping with the Symposium t i t l e and i n response 
to the i n v i t a t i o n of the Symposium organizer, a detailed 
exposition i s presented f o r the trace detection of a pesticide 
(Fenvalerate) by gas chromatography — an exercise which 
hi g h l i g h t s the r e l a t i o n s h i p of the c a l i b r a t i o n process to the 
detection c h a r a c t e r i s t i c , and which exposed a su r p r i s i n g (and 
unnecessary) l i m i t a t i o n to the detection c a p a b i l i t y . 

Treatment of a r e a l , imperfect c a l i b r a t i o n data set 
revealed the f u l l complexity and breadth of the c a l i b r a t i o n 
curve -detection l i m i t problem, ranging from varying s t a t i s t i c a l 
weights to an uncertain model and data containing possible 
blunders to an a r t i f i c i a l l y imposed response threshold. 
Attempts to s i m p l i f y an a c t u a l l y complicated s i t u a t i o n were 
rejected i n favor of a f u l l exposition including an Appendix 
containing worked-out numerical examples. 

SIMPLE HYPOTHESIS TESTING - SCALAR SIGNALS 

The basic detection concepts can be presented f o r the "zero-
dimensional" case where detection decisions and detection l i m i t s 
are established simply from the c h a r a c t e r i s t i c s of the chemical 
s i g n a l (instrument response), without giving d e t a i l e d a t t e n t i o n 
to other dimensions such as time, wavelength, analyte concentra
t i o n , e tc. A c t u a l l y , higher dimensional s i t u a t i o n s (multipara
meter separations or detector responses) reduce to t h i s case 
either through sequential c l a s s i f i c a t i o n schemes or v i a algo
rithms which operate d i r e c t l y on the multidimensional data. 

Our basic task i s to d i s t i n g u i s h the blank or background 
(H Q, n u l l hypothesis), from a si g n a l at the detection l i m i t (H-|, 
a l t e r n a t i v e hypothesis). A straightforward p r o b a b i l i s t i c 
formulation can be given provided that the observed signa l s 
( a r i s i n g from an underlying "true" signal) are random, independ
ent and stationary. To completely specify the f a l s e p o s i t i v e 
(a) and f a l s e negative (3) r i s k s , we must know the form of the 
d i s t r i b u t i o n and i t s parameters. For most a n a l y t i c a l s i t u a t i o n s 

 P
ub

lic
at

io
n 

D
at

e:
 J

ul
y 

15
, 1

98
5 

| d
oi

: 1
0.

10
21

/b
k-

19
85

-0
28

4.
ch

00
5



5. CURRIE Dimensions of Detection in Chemical Analysis 
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we assume the d i s t r i b u t i o n to be normal (Gaussian), and the 
dispersion parameter i s simply the imprecision (standard 
deviation, o). 

As shown i n Reference ( 2 ) , i t i s s u f f i c i e n t to have an 
estimate of the blank (B) and i t s standard deviation (05) plus 
the v a r i a t i o n of o y with the si g n a l magnitude (y) to specify a 
decision c r i t e r i o n or l e v e l (LQ) given a, and a detection l i m i t 
(LD) given LQ and 3 . (See e s p e c i a l l y Figure 2 i n Reference 
( 2 j ) . I f oy i s independent of signal magnitude (at and below 
the detection l i m i t ) , and i f y i s normally d i s t r i b u t e d , one con
cludes that 

LC - z1-a°o < 1 a) 
L D = LQ + Z1-300 (1b) 

where z<j_a, z-j-g are the one-sided normal standard p e r c e n t i l e s , 
and o 0 * [oy 2 + O B 2 ] 1 / 2 1 8 03 f o r "paired 1 1 observations. (When 
the net sig n a l equals zero, o y - 05.) I f 5$ r i s k s are accepta
b l e , then LQ • 1.645o0, and LD « 2LQ. A large l i t e r a t u r e e x i s t s 
g i v i n g refinements to the above exposition — fo r example, 
Student's-t with the appropriate number of degrees of freedom 
should replace z<j_a when 0 i s estimated by r e p l i c a t i o n ; and 
interference w i l l increase the magnitude of o 0 — but the basic 
concepts remain unchanged. 

One source of confusion deserves emphasis. That i s , LQ i s 
a threshold or c r i t i c a l point (decision l e v e l ) against which an 
observed net sign a l (y-B) should be compared to judge s i g n i f i 
cance. I f y-B > LQ, one may conclude that the f a l s e p o s i t i v e 
r i s k i n making the decision "detected" does not exceed a. On 
the other hand, Lp i s a performance c h a r a c t e r i s t i c of the CMP, 
which marks the true (net) s i g n a l which w i l l be detected with 
p r o b a b i l i t y ( 1 - 3 ) , given Ln (or a). Although Lp i s c r u c i a l for 
sp e c i f y i n g the detection c a p a b i l i t y of the CMP, i t i s often 
ignored i n favor of the decision l e v e l , LQ. ( I t has been 
implied that " d e f i n i t i o n s . . . concerned with errors of the second 
type [ 3 ] are [too] complex" for common understanding and use 
(«)!) 

I f the c a l i b r a t i o n curve, y - f ( x ) , i s exactly known (and 
monotonic) then the si g n a l detection l i m i t can be transformed 
d i r e c t l y into the concentration or analyte detection l i m i t , x^. 
A l t e r n a t i v e l y , i f a c a l i b r a t i o n f a ctor i s given within c e r t a i n 
systematic error bounds, one can specify a corresponding 
uncertainty range f o r the concentration detection l i m i t . There 
i s no need to transform LQ i n t h i s case, f o r i t i s simply a te s t 
l e v e l for comparison of the observed s i g n a l with that a r i s i n g 
from the blank. (Note that, even though the magnitude of the 
concentration detection l i m i t i s uncertain, a quite d e f i n i t e 
value e x i s t s which would y i e l d s i g n a l s exceeding LQ with a 
p r o b a b i l i t y of exactly 1 - 3 . ) 
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52 TRACE RESIDUE ANALYSIS 

[A note concerning terminology: Ljj (Ref. 2) and STJ have 
been used interchangeably to denote the detection l i m i t f o r the 
net si g n a l (y-B); x D i s used here to denote the analyte detec
t i o n l i m i t (concentration or amount). LQ (or SQ or XQ) denotes 
the decision l e v e l ; i t i s also c a l l e d the c r i t i c a l point or 
l e v e l , t e s t l e v e l , or threshold by various authors. The 
d i r e c t l y observed gross signal (y) i s here refer r e d to as the 
response.] 

THE ANALYTICAL MODEL, ASSUMPTIONS, AND PRACTICAL IMPLICATIONS 

Before stepping through the several dimensions, i t i s worthwhile 
to examine the general a n a l y t i c a l model which applies and, 
through that, consider the implications of the necessary 
assumptions i n p r a c t i c a l a p p l i c a t i o n s . To begin, l e t us express 
the observed response (y) and i t s error (e) i n terms of the 
blank (B) and concentrations of a l l contributing analytes ( X J ) . 

Y i * f ( B i f x j ) + e i (2a) 

Here, we represent the one-dimensional s i t u a t i o n (y i s a 
single-subscripted vector) so that more than one component-j may 
be considered. Estimated c o n c e n t r a t i o n s ^ are then 

"XJ = OpiyO - xj + ej (3a) 

where Op represents an operator (or algorithm) applied to the 
data vector. I t should be noted i n passing that a l t e r n a t i v e , 
v a l i d operators generally may be applied to the same data set. 
Such Op's d i f f e r p r i m a r i l y i n e f f i c i e n c y and robustness. A 
simple example, for i s o l a t e d chromatographic peaks, would be: 
0-j - peak area estimator, O2 - peak height estimator, O3 - a 
d i g i t a l f i l t e r . Obviously, the standard error (and detection 
l i m i t ) depends upon the algorithm selected. 

In Equation 3a, we take ej to be random, with zero mean and 
known d i s t r i b u t i o n , i n order to apply the p r o b a b i l i s t i c theory 
of hypothesis t e s t i n g . Selection of the operator and the nature 
of ej are governed by (our perceptions of) the structure of 
Equation 2. Assumptions concerning f_ and e^ are c r u c i a l . In 
the best of circumstances £ i s l i n e a r ( i n the Xj and B) and e± 
i s normal, independent and unbiased. Then, 

P , x Y i - Bi + 3̂  A i j Xj + e i (2b) 

(P equals the number of components, and e^ i s normal with 
standard deviation o^.) Then, Op can be a l i n e a r operator (on 
the yj^), such as that associated with l i n e a r l e a s t squares 
estimation (or, for non-interfering peaks, O1-O3) — and the 
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5. CURRIE Dimensions of Detection in Chemical Analysis 53 

ej's have the desired properties (random, unbiased, normal). 
Note, however, that unlike the e j / s , the e j f s are not generally 
independent. I f the model i s correct and oi known, the OJ can be 
computed by error propagation, or Monte Carlo t r i a l s f or a 
complex model. I f i s unknown (but constant), and d.f. 
(degrees of freedom) > 0, then the dispersion about the f i t t e d 
values ( y i ) y i e l d s an estimate f o r o 2. In every case, independ
ent experiments and r e p l i c a t e s are v i t a l f o r external v a l i d a t i o n 
of the presumed OJ'S — e.g., with the a i d of the Analysis of 
Variance. 

Deviations from the Ideal Model. In a l l r e a l s i t u a t i o n s , the 
error terms have a structure q u a l i t a t i v e l y represented by 
Equation 4, 

e « <5 + A + h(t) + b (4) 

containing the desired random error term 6, a systematic error 
term A, a non-stationary or l a c k - o f - c o n t r o l term h ( t ) , and a 
blunder or mistake (or o u t l i e r ) term b. I f 6 i s non-normal, but 
of known d i s t r i b u t i o n , r e l i a b l e confidence i n t e r v a l s and 
detection l i m i t s may s t i l l be set; but the non-random terms i n 
Equation 4 make i t impossible to tre a t detection from a s t r i c t l y 
p r o b a b i l i s t i c viewpoint — at best one may simply set approxi
mate bounds based on very c a r e f u l l y considered " s c i e n t i f i c 
judgment". 

A complete exposition on the assumptions which must be 
s a t i s f i e d to assure the v a l i d i t y of ( s t a t i s t i c a l ) hypothesis 
t e s t i n g i s beyond the scope of our discussion, as are the 
implications of estimated (vs. known) variances and r e l a t i v e 
( s t a t i s t i c a l ) weights, but a b r i e f summary, framed i n the 
context of Equations 2-4, i s given i n Table I. (See Reference 
(5) for further d e t a i l s . ) 

One f i n a l point deserves emphasis. The astute reader may 
already have considered a "higher" l e v e l of detection — i . e . , 
detection of deviations from the i d e a l assumptions v i a appropri
ate t e s t s t a t i s t i c s ( x 2 t F, ...) or independent measurements. 
Unfortunately, unless there are severe deviations or large 
numbers of degrees of freedom, such tests generally lack 
s u f f i c i e n t power to signal s i g n i f i c a n t (unanticipated) e r r o r . 
For example, a) i n ( r a d i o a c t i v i t y ) counting experiments a 
non-Poisson random error component, equal i n magnitude ( v a r i 
ance) to the Poisson component, w i l l not be detected u n t i l there 
are 46 degrees of freedom (6), and b) i t was necessary for a 
minor component i n a mixed Y-ray spectrum to exceed i t s detec
t i o n l i m i t by -50?, before i t s absence was detected by lack-of-
f i t ( x 2 , model error) (7)• 

Simple Analyte Detection and Estimation. Using the simplest 
form f o r Equation 2b 
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54 TRACE RESIDUE ANALYSIS 

Table I. Possible Erroneous Assumptions 

Nature 

Lack of con t r o l ; blunders 

Model error 

f(B,x) ^ B + ZAx 

P - wrong 
A i j ~ wrong 

B^ ~ wrong a 

Error d i s t r i b u t i o n (e^) 

A, systematic uncertainty 

e^, non-normal, non-
independent 

Non-linear operator (Op) 

A j j - random e r r o r a 

Faulty r e p o r t i n g 3 

Consequence 

Measurement process non-existent 

Biased r e s u l t s 

Non-random uncertainty bounds on 
r e s u l t s ( X J ) 

Non-normal ej 

Non-normal ej 

Information l o s s 

aFurther discussion appears i n the t e x t . 
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5. CURRIE Dimensions of Detection in Chemical Analysis 55 

Yi = B i + AiX + e i (2c) 

we can consider the matter of the detection l i m i t f o r four 
important, common s i t u a t i o n s . (See the following section for 
d e t a i l e d mathematical development, and the Appendix f o r worked-
out numerical examples.) 

Case I - Signal Detection (A ~ ignored). (y-B) gives an 
estimate of the net signal (Ax), and the signal detection l i m i t 
i s determined from + o§ as discussed i n the f i r s t section of 
t h i s a r t i c l e . Although a d e f i n i t e analyte concentration (XTJ) 
corresponds to the signal detection l i m i t , i t s magnitude i s 
unknown i n the absence of information concerning the slope (A) 
of the c a l i b r a t i o n curve. Since the operation (y-^) i s l i n e a r , 
the estimated net si g n a l i s normally d i s t r i b u t e d , and percen
t i l e s of the normal standard variate (z) are appropriate f o r 
c a l c u l a t i n g the decision and detection l i m i t s . I t should be 
noted that signal detection alone i s generally of l i t t l e 
i n t e r e s t i f there may be two or more contributing analytes. 

Case I I - Analyte Detection (A ~ assumed). Here, the 
analyte- rather than signal-detection l i m i t i s c a l c u l a t e d , but 
the systematic error i n A, applied i n the estimation of x from 
Equation 2c imposes systematic error bounds which must be 
applied to the analyte detection l i m i t . The l i m i t i s no longer 
purely p r o b a b i l i s t i c i n nature (8^). 

Case I I I - Analyte Detection (A ~ random). One of the most 
r e l i a b l e modes of simple (single) analyte detection obtains when 
y, B and A are each measured (observed) f o r every sample 
processed. Such i s often the case, f o r example, i n radiocarbon 
dating where the age of each unknown a r t i f a c t i s estimated from 
sequential measurements of the sample, the background, and the 
radiocarbon dating standard. Thus, 

The beauty of t h i s completely random approach to the analyte 
detection l i m i t i s the d i r e c t a p p l i c a b i l i t y of the s t a t i s t i c a l 
hypothesis t e s t i n g formalism. Also, long-term trends i n c a l i 
b ration slope or backgrounds have l i t t l e influence. One impor
tant assumption i s made: that the form of the c a l i b r a t i o n curve 
[Equation 2c] i s f i x e d . Also, a subtle change has occurred, the 
operation i s no longer l i n e a r , with A i n the denominator. Thus, 
the d i s t r i b u t i o n of x i s only asymptotically normal, as the 
r e l a t i v e standard deviation of 'A' becomes smaller. 

Case IV - Analyte Detection ( c a l i b r a t i o n curve determina
tion) . I f a ser i e s of known concentration samples i s measured, 
one can estimate (or v e r i f y ) both the form and the parameters 

x = = x + e x (3b) 
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56 TRACE RESIDUE ANALYSIS 

(B, A) for the c a l i b r a t i o n curve. Detection under t h i s circum
stance i s the p r i n c i p a l topic of the next major section t r e a t i n g 
the detection of the pesticide Fenvalerate by gas chromatography 
(GC). Some subtle issues w i l l be noted here, however. 

(a) I f the c a l i b r a t i o n curve i s determined once, and then 
i t s estimated parameters and form repeatedly applied to a s e r i e s 
of samples, we are faced with the mixture of random and system
a t i c error again, as i n Case I I above. Errors i n / k and 1̂  which 
were once random become systematic with respect to the series of 
samples, and the p r o b a b i l i s t i c detection l i m i t has imposed upon 
i t systematic error bounds. 

(b) I f the c a l i b r a t i o n curve i s redetermined for each 
sample, we have the analogue of Case I I I , where ̂ i s indeed 
random, but not necessarily quite normal. Deviations from 
normality here, and e f f e c t s of systematic error bounds [above 
-(a)] may be quite n e g l i g i b l e i f the c a l i b r a t i o n curve i s stable 
and i t s measurement very precise compared to subsequent sample 
measurements. As noted i n the next s e c t i o n , however, a poor 
design (concentrations of known samples) can make the analyte 
detection l i m i t non-existent for any sample concentration! 

(c) The e f f e c t s of assumptions concerning Equation 2c 
can be profound. In the case of c a l i b r a t i o n , B i s generally 
assumed constant, independent of analyte concentration, and 
there may often be two independent estimates f o r B: that 
derived from a "blank sample", and that corresponding to the 
intercept of the c a l i b r a t i o n curve. Discrepancies between these 
two estimates can sometimes be very l a r g e , and that implies 
serious questions both about the presumed measurement process 
(model) and i t s detection l i m i t (9^. Two i l l u s t r a t i o n s where 
assumed constancy of B has been shown se r i o u s l y i n error have 
been given by Patterson (10) who stressed the importance of 
correcting reagent blanks for chemical y i e l d , and Scales (11) 
who noted the differences i n l i q u i d s c i n t i l l a t i o n quenching 
behavior of background and analyte r a d i a t i o n s . F i n a l l y , we note 
that B* and £ derived from the same c a l i b r a t i o n sample set are 
necessarily correlated, i n contrast to independent observations 
of the slope and the blank [Case I I I ] . 

Reporting, Regulations, and P r a c t i c a l Implications. Diverse 
reporting practices f o r small or marginally detectable s i g n a l s , 
p a r t i c u l a r l y when rel a t e d to regulatory issues or matters of 
public safety, lead to much needless confusion and l o s s of 
information (3). S p e c i f i c p r a c t i c a l i l l u s t r a t i o n s are j u s t now 
being i d e n t i f i e d i n an i n v e s t i g a t i o n of r a d i o a c t i v i t y detection 
c a p a b i l i t i e s i n the nuclear industry. For example, we f i n d that 
many nuclear laboratories are making detection decisions at the 
detection l i m i t , such that L c • Lp, or 3 = 0.50 (50J chance of a 
f a l s e negative). Following such decisions the experimental 
r e s u l t s are often quoted as upper l i m i t s , "ND", or even zero! 
(The mode of reporting w i l l sometimes be adjusted according to 
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5. CURRIE Dimensions of Detection in Chemical Analysis 
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the audience.) For example, i t seems u n i v e r s a l l y assumed that 
the public cannot comprehend estimated r e s u l t s which carry 
negative signs, even though the associated uncertainty greatly 
exceeds the absolute value of the negative number. 

Consequences of such varied practices are that r e s u l t s from 
d i f f e r e n t organizations cannot be intercompared, and proper 
averages (e.g., quarterly) cannot be derived even from the 
r e s u l t s of a given organization. 

Other practices which tend to underestimate the true 
detection l i m i t s and add confusion to the uniform evaluation of 
r e s u l t s by the public include: varied (or no) treatment of 
interference, avoidance of systematic error bound estimation, 
and consideration of Poisson counting errors only. A further 
problem which has emerged with the prevalence of microprocessors 
and proprietary computer software, i s the e f f e c t of hidden 
algorithms and inaccessible source code, so that data evaluation 
operations (Op) are not known to the user, and possible source 
code deficiences and blunders cannot be r e a d i l y assessed. 

A c t u a l l y , the s i t u a t i o n i s not quite so bleak as suggested 
above. Many laboratories are addressing the issues of detection 
decisions, detection l i m i t s and reporting with considerable 
care. Also, improvement w i l l come about, as a r e s u l t of the 
current recognition of the above problems by regulatory agencies 
such as the Food and Drug Administration and the Nuclear 
Regulatory Commission (12). Education, w i t h i n our d i s c i p l i n e 
and e x t e r n a l l y , holds the greatest hope. Clear understanding of 
the concepts of measurement uncertainty and detection l i m i t s 
w i l l discourage the further introduction of views such as (some 
interpretations of) the Delaney Amendment to the Food, Drug and 
Cosmetic Act, which suggests that chemists should be able to 
demonstrate the complete absence of a given analyte (e.g., a 
pes t i c i d e ) i n a given sample (13). 

PESTICIDE DETECTION - ONE DIMENSIONAL CALIBRATION CURVE 

Detection, and the GC c a l i b r a t i o n process f o r the pesticide 
Fenvalerate constitutes a major focus of t h i s paper. Though 
r e l a t i v e l y simple compared to possible higher dimensional cases, 
i t i s representative of a large and basic class of problems 
( c a l i b r a t i o n i n one-dimensional chromatography and spectros
copy), and i t e x h i b i t s already some of the d i f f i c u l t i e s with 
assumption v a l i d i t y . 

To gain some perspective on the problem, i t i s well to 
r e a l i z e that assessment of the detection l i m i t i s subject to a l l 
of the assumptions and r e s t r i c t i o n s of the estimation process. 
That i s , the functional and error structure of the c a l i b r a t i o n 
curve must be known or assumed, and the respective parameters 
and t h e i r uncertainties must be estimated. Although large 
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58 TRACE RESIDUE ANALYSIS 

concentration behavior i s l e s s relevant, the estimation and 
v a r i a b i l i t y of the blank (and interference) i s c r u c i a l , as i s 
the design of the c a l i b r a t i o n process. 

In the text which follows we s h a l l examine i n numerical 
d e t a i l the decision l e v e l s and detection l i m i t s for the Fenval-
erate c a l i b r a t i o n data set ("set-B") provided by D. Kurtz (17). 
In order to calc u l a t e said detection l i m i t s i t was necessary to 
assign and f i t models both to the variance as a function of 
concentration and the response ( i . e . , c a l i b r a t i o n curve) as a 
function of concentration. No simple model (2, 3 parameter) was 
found that was consistent with the empirical c a l i b r a t i o n curve 
and the r e p l i c a t i o n e r r o r , so several a l t e r n a t i v e simple 
functions were used to i l l u s t r a t e the approach for c a l i b r a t i o n 
curve detection l i m i t s . A more appropriate treatment would 
require a new design including r e a l blanks and Fenvalerate 
standards spanning the region from zero to a few times the 
detection l i m i t . Detailed c a l c u l a t i o n s are given i n the 
Appendix and summarized i n Table V. 

Decision and Detection — Linear C a l i b r a t i o n Curves. Before 
examining the actual Fenvalerate GC data, l e t us consider the 
basic l i n e a r c a l i b r a t i o n r e l a t i o n s . (What follows was ins p i r e d 
i n part by Hubaux and Vos (14), to which the reader might refer 
f o r supplemental d e t a i l . ) I f we represent a s t r a i g h t - l i n e 
c a l i b r a t i o n as 

y = B + Ax + e (2c) 

where, A represents the slope of the l i n e and e, a random normal 
error (y, B, x - as defined previously) then the estimated 
concentration i s 

x - (y - %)/k = S/A (3b) 

where S represents the estimated net s i g n a l . In p r i n c i p l e , and 
i d e a l l y , the variance of x (V x«o x

2) could be obtained by f u l l 
r e p l i c a t i o n as i n Case I I I i n the preceding section. Alterna
t i v e l y , i t may be estimated following c l a s s i c error-propagation 
formulas (15) as 

1 V(y-y^) 
V x - J2

 C V y ( x ) + V B + X2 V A + 2xV A B] = a 2 (5) 

By s e t t i n g x to zero i n Equation 5, x c (the decision l e v e l ) may 
be computed — i . e . , 

XC = zi-o/Vo (V x at x = 0) (6a) 
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The detection l i m i t must be determined by i t e r a t i o n : 

x D = x c + z i - B v 1 I f 5 " (V x at x = x D ) (6b) 
but such i t e r a t i o n takes place quickly since V x changes r e l a 
t i v e l y slowly below the detection l i m i t , and xp * 2XQ when a = 
3. 

I f the standard deviation of the observed response o y i s 
constant and i f a = 3, then an a n a l y t i c s o l u t i o n can be given as 
follows. From Equations 5 and 6, 

z2 
( x D - x C ) 2 s "^2 ( V y + VB + xD 2 vA + 2X D V BA) 

By s u b s t i t u t i n g x c = zo 0/A = z(V y + Vg) 1 / 2/A and rearranging, we 
obtain 

x D = 2x c(K/I) (7) 

where: K = 1 + p B A ( OB/O0)(Z<|>A) ; and I = 1 -(z<j>A)2 

[In the expression for K, V B A has been replaced by i t s equiva
lent PBA°B°A» A N D •A represents the r e l a t i v e standard deviation 
(RSD) of A — i . e . , <|>A =* oA/A.] 

Important consequences follow immediately from the form of 
Equation 7. F i r s t , i f independent estimates B, t are obtained, 
the c o r r e l a t i o n c o e f f i c i e n t J>BA i s necessarily zero; so K = 1. 
Second, i f <|>A « 1 (precise A or A-known), both K and 1 - 1 ; so 
x D = 2 XQ. Third, since PBA i s negative and | P B A I < 1 » A N D 

OB £ o 0, the r a t i o K/I may be written as 
[1-e(z<|>A)]/[l-(z<f>A)(z<|>A)] where 0 £ e < 1. Thus, there can be 
no analyte detection l i m i t ( x D ») i f 

<f>A 5 1/z = 1/1 .645 =* 0.608 

Also x D = 2x c i f e = |PBA I°B / OO + ZH> a n d i n t n e l i m i t , <j>A->0. 
I f e < z<|>A, XD > 2XQ and the converse. The minimum i n the r a t i o 
xp/xc occurs when the design {x^} i s such that x - xp (see 
Table I I and Equation 10). 

More generally, the c a l i b r a t i o n curve can be represented as 
a matrix equation 

y - M8 + e (8) 

whose weighted least-squares s o l u t i o n i s 

8 = (MTwM)""1 MTWy (9a) 
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60 TRACE RESIDUE ANALYSIS 

V e = (MTWM)-1 * (M TM)" 1V y (9b) 

The approximation for the variance of 6s i n (9b) holding when V. 
i s approximately constant, A summary of the a p p l i c a t i o n of 
Equation 9 to the l i n e a r c a l i b r a t i o n curve derived from known 
analyte concentrations {x} - (x-j, X 2 ... x n) and corresponding 
s t a t i s t i c a l weights (inverse variances) i s given i n Table I I . 

Table I I . Decision and Detection (weighted l e a s t squares) 

(y = M0 = B + Ax) 

eT = (B A) 

(Zw Zwx \ 

) , where W£ = 1/V y(xi) 
Zwx Zwx2y [k/V y, i f k-replicates] 

Then, 
1 T , 1 (x - x w )2 1 

V x * ̂  V v(x) + — + — : w
 n a 

x A 2 L Z w Z w ( x " x w ) 2 J 
Decision: x = 0 Detection: x » x^ 

Expressions f or the variances and covariance of B and A follow 
from the inverse matrix (MTWM)*'1. See the discussion of "case-
f" from Table V i n the Appendix, f o r e x p l i c i t formulas. 

(Note that x w represents the weighted mean of the {x}.) Given 
the defining expressions f o r decision and detection l i m i t s 
together with the c a l i b r a t i o n design {x}, the equation f o r V x i n 
Table I I immediately y i e l d s the desired quantities f o r the 
l i n e a r c a l i b r a t i o n curve. For equal weights (Vy - const.) and 
taking roots, the expression s i m p l i f i e s to 

r . -|1/2 
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Non-linear curves may be treated using Equation 9 d i r e c t l y , 
using the techniques of non-linear l e a s t squares, when appropri
ate. (Note that a non-linear c a l i b r a t i o n curve does not 
necessarily imply non-linear l e a s t squares. The l a t t e r i s 
necessary only i f the problem i s non-linear i n the estimated 
parameters (16). For example, y = a+bx+cx2 and y = a+bxc are 
both non-linear functions, but only the l a t t e r i s non-linear i n 
the parameters.) 

Fenvalerate Data. C a l i b r a t i o n data for the GC measurement of 
Fenvalerate were furnished by D. Kurtz (17). Average responses 
f o r f i v e r e p l i c a t e s at each of f i v e standard concentrations are 
given i n Table I I I . I t should be noted that the stated r e 
sponses are not raw observations, but rather on-line computer 
generated peak area estimates (cm 2). (Had we started with the 
raw data [chromatograms], the problem would a c t u a l l y have been 
two-dimensional, including as variables retention time and 
concentration.) The stated uncertainties i n the peak areas are 
based on a l i n e a r f i t (o * a+bx) of the r e p l i c a t i o n standard 
deviations to concentration; and the " l o c a l slopes" [ f i r s t 
d ifferences] i n the l a s t column of Table I I I are presented 

Table I I I . Fenvalerate (GC) Data - Set B 

(averages of 5 r e p l i c a t e s ) 

Response (y, cm 2) a Amount (x, ng) Ay/Ax 

1.18 ± 0 . 0 2 4 [0.023] 0.05 23.6 

7.08 ± 0.06s C0.365] 0.25 29.5 

29.68 ± 0.23 [ 0 . 1 8 ] 1.00 30.1 

209.0 ± l . l - i [ 1 . 8 7 ] 5.00 44.8 

920.6 ± 4 . 4 0 [ 4 . 3 2 ] 20.00 47.4 

U n c e r t a i n t i e s represent standard e r r o r s , based on the f i t t e d 
equation o(y) - (0.028 + 0.49 x)//5~. Quantities i n brackets are 
the observed standard e r r o r s . 
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62 TRACE RESIDUE ANALYSIS 

simply to indicate the extent of no n - l i n e a r i t y i n the c a l i b r a 
t i o n curve, (This i s not so easy to grasp from a p l o t , because 
of the very wide dynamic range.) 

In order to calcula t e V x, and therefore the detection 
l i m i t , i t i s necessary f i r s t to estimate V y as a function of 
concentration and then to use t h i s information to estimate the 
parameters of the c a l i b r a t i o n curve using weighted l e a s t squares 
(WLS) f i t t i n g . Rigorous a p p l i c a t i o n of WLS requires knowledge 
of r e l a t i v e weights, but the technique i s already considered 
adequate when n £ 5 (18). 

In Table IV we present the r e s u l t s of f i t t i n g a l t e r n a t i v e 
models to the pattern of weights and the c a l i b r a t i o n curve. 
Before using the r e s u l t s i n Tables I I I and IV to calcula t e 
detection l i m i t s , 

Table IV. Alternative C a l i b r a t i o n Models 

Model ^ t j^A/dff 

(1) y - B + Ax(a) 0.042 22.8 

(2) y = B + Ax -1.04 ± 0.02 38.81 ± 0.12 32.7 

(3) y = B + Aq(b) 0.042 ± 0.024 32.46 ± 0.10 9.64 

( a^This model i s taken to be exact — i t uses B from model-3 
together with the i n i t i a l point, (x,y) = (0.05, 1.18), to 
derive A. 

take q to be exactly x 1 - 1 2 to account f o r the non-
l i n e a r i t y i n the curve; the two parameters (B, A) are then 
estimated by l i n e a r l e a s t squares, using weights as indicated 
i n Table I I I . 

a number of observations should be made: 
(a) The observed SE's (Table I I I ) are generally monotonic 

( c e r t a i n l y not constant) with increasing concentration and 
consistent with the l i n e a r model, with the exception of the 
value at x = 0.25 ng. 

(b) The i n i t i a l observation (at x = 0.05) has a response 
already > f o r t y times the zero-point standard deviation 
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(1,18/0.028); thus, i t i s c l e a r l y way i n excess of the detec
t i o n l i m i t . A very large extrapolation i s therefore necessary 
to estimate both the background (B) and standard deviation (o y) 
i n the region of the detection l i m i t . This i s the basis of 
introducing model-1, for i l l u s t r a t i v e purposes (Table IV). 

(c) Model-2 (Table IV) obviously i s inadequate; the 
s i g n i f i c a n t l y negative intercept and poor f i t r u l e i t out (over 
the e n t i r e data range). Not shown are simple polynomial f i t s , 
which are also inadequate. 

(d) Model-3 i s better. The intercept i s consistent with 
zero (to be expected from the technique of c a l c u l a t i n g net GC 
peak area). The f i t , however, implies an a d d i t i o n a l (non-
r e p l i c a t i o n ) error source. Again, f o r i l l u s t r a t i v e purposes, 
the function q(x) has been taken exact i n order to avoid the 
d i s t r i b u t i o n a l perturbations of non-linear l e a s t squares (not 
j u s t i f i e d i n view of the foregoing l i m i t a t i o n s of the data). 

Before turning to the question of detection, i t i s i l l u m i 
nating to examine a plot of the data, and the r e s i d u a l s from the 
f i t of model-3. These are shown i n Figure 1. The p r i n c i p a l 
observations which derive from the r e s i d u a l plot are that the 
assumed shape of the curve and v a r i a t i o n of s t a t i s t i c a l weight 
with concentration are generally acceptable. The magnitude of 
the residuals and dispersion for c e r t a i n r e p l i c a t e s and concen
t r a t i o n s are not. That i s , there i s a d d i t i o n a l scatter about 
the f i t t e d curve, unaccounted f o r by the r e p l i c a t i o n error; and 
c e r t a i n r e p l i c a t e s , e s p e c i a l l y (• and•) i n the 0.25 ng and 5 ng 
samples are more widely separated than the others. Queries 
which followed these observations l e d to suggestions that some 
untoward d i l u t i o n errors may have been involved i n preparing two 
of the standards, and random errors i n "x f t (concentrations of 
standards) may not be n e g l i g i b l e . Thus, a d e t a i l e d evaluation 
of the c a l i b r a t i o n process would require s c r u t i n y (or restand-
ardization) of standard solutions for possible blunders (out
l i e r s ) , and the d i f f i c u l t task of f i t t i n g the c a l i b r a t i o n data 
taking into account errors i n both variables (19). 

Fenvalerate Detection L i m i t s . To the extent that detection 
l i m i t s require knowledge of the c a l i b r a t i o n curve and random 
error (for x) as a function of concentration, a l l of the 
foregoing discussion i s relevant — both for detection and 
estimation. However, curve shape and errors where x >> x D , are 
r e l a t i v e l y unimportant at the detection l i m i t , i n contrast to 
d i r e c t observations of the i n i t i a l slope and the blank and i t s 
v a r i a b i l i t y . ( I t w i l l be seen that the i n i t i a l observation i n 
the current data set exceeded the ultimate detection l i m i t by 
more than an order of magnitude!) 

To give some perspective to the above remarks a set of 
a l t e r n a t i v e decision and detection l i m i t s are given i n Table V, 
derived from appropriate information i n the preceding three 
tables. F i r s t , we observe that there are two broad classes of 
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64 TRACE RESIDUE ANALYSIS 

1000. 

0.03 0.1 1. 10. 30. 
Amount (ng) 

Fenvalerate—Set B 

CO D 
"35 o> cc 
"O <D N 
75 
E 

+ 3 

- 3 

Sample (order) 

Figure 1. Top portion shows a plot of the observed Fenvalerate 
response vs. the mass (ng). Lower plot gives ordered, normalized 
r e s i d u a l s from the f i t of model-3 to the data (Table IV) using 
the weights given i n Table I I I . (Symbols indicate the f i v e 
r e p l i c a t e s , and the plotted r e s i d u a l s are normalized by the 
standard deviations for these i n d i v i d u a l r e p l i c a t e s . The 
"goodness of f i t " r e siduals of the model to the means of the 
re p l i c a t e s are larger by y^7 because they are normalized by the 
standard errors at each concentration.) 
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Table V. Fenvalerate Detection Limits 

Condition Amount (pg) 

No Threshold (y r. « Ŝ f + B » 0.09 cm2) xp, xp 

(a) o y - 0.028 2.02 4.04 

(b) o y - 0.028 + 0.49x [x i n ng] 2.02 4.19 

(c) o y « 0.028 [B, A - estim.] 2.30 4.60 

Threshold (yn = 1.00 cm2) 

(d) o y = 0.028 42.0 44.0 

(e) o y = 0.028 + 0.49x 42.0 45.7 

( f ) y = B + Aq [ o y = f ( x ) ] 43.0 46.4 

See text and the Appendix for de t a i l e d comments on the 
in d i v i d u a l conditions ( a ) - ( f ) , and ca l c u l a t i o n s of r e s u l t s . 
(Note that a l l except ( f ) use the model, y = B + Ax. For 
Case-f, q i s defined as x 1- 1 2.) 
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66 TRACE RESIDUE ANALYSIS 

l i m i t s : (1) the "natural" ( v a r i a b i l i t y - b a s e d ) lower l i m i t 
having no imposed a r t i f i c i a l response threshold; (2) an order-
of-magnitude higher set of l i m i t s , r e s u l t i n g from a minimum 
response of unity ( y c - 1.00) imposed by the data evaluation 
"black box" (hardware-software). The ef f e c t of such a high, 
a r t i f i c i a l discriminator i s to make a ( f a l s e p o s i t i v e error) 
u t t e r l y n e g l i g i b l e , but at the cost of considerable s e n s i t i v i t y 
( i . e . , detection c a p a b i l i t y ) . 

Added e f f e c t s of the y-threshold, i f there are uncertain
t i e s i n B and A, are to produce (generally small) uncertainties 
i n a and x D. The l a t t e r i s given by error propagation: 

2 2 2 2 <j> - <\> + 2p d> <f> (B/S ) + <J> (B/S ) (11) X d
 yA BA A B D B D 

where the <j>fs are r e l a t i v e standard deviations, and Sj) i s the 
net s i g n a l (y D-B) at the detection l i m i t . (See the Appendix, 
Case-f, f o r the a p p l i c a t i o n of Equation t1.) 

Within each of the two classes i n Table V, the f i r s t two 
sets of l i m i t s ( ( a ) , (b), (d), (e)) use the constant and 
variable weights, r e s p e c t i v e l y , and assume B and A are exactly 
known (model-1 i n Table IV). The remaining l i m i t s involve 
estimated parameters, based on the design {x} and the equations 
of Table I I I . Method (c) u t i l i z e s the parameters of Model-1 
and constant weight; method (f) uses Model-3 and variable 
y-err ors (we i ght). 

P r i n c i p a l conclusions to be drawn from t h i s exercise, 
displayed g r a p h i c a l l y i n Figure 2, are that: 

© The "black-box" threshold imposes a large and unnecessary 
increase i n detection l i m i t . 

© In the region of the detection l i m i t , f o r t h i s data set, 
the a l t e r n a t i v e weighting scheme or model selected has 
l i t t l e e f f e c t . 

© The a d d i t i o n a l , non-replication, scatter about the f i t t e d 
c a l i b r a t i o n curve — perhaps due to random error i n the 
x-variable — does show a subs t a n t i a l e f f e c t . (See l a s t 
paragraph, Append!x.) 

© Optimal assessment of the minimum detection l i m i t would 
require a design {x} w e l l below the current standard con
centrations and including the blank. 

The scope of t h i s a r t i c l e does not permit the consideration of 
physical vs. empirical models for the c a l i b r a t i o n curve, nor the 
ef f e c t of new designs on the detection l i m i t , but these are 
extremely important issues i n c a l i b r a t i o n . For example, i t can 
be shown that with an inadequate design the detection l i m i t (for 
a » 3 = 0.05) may not even e x i s t ! (XD «>.) 
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[y(cm2)l 

Figure 2. C a l i b r a t i o n curve for Fenvalerate i n the Regions of 
the Detection L i m i t s . Numerical values of decision (C) and 
detection l i m i t s (D) are shown for the "No Threshold", case (b) 
and "Threshold", case (e) from Table V. For the former, a- and 
3-errors are indicated q u a l i t a t i v e l y . The f i r s t (lowest 
concentration) data point i s shown at (x,y) = (50, 1.18). 
(Though t o p o l o g i c a l l y c o r r e c t , the scales have been d e l i b e r a t e l y 
d i s t o r t e d to encompass both cases, and e s p e c i a l l y near the 
o r i g i n to dramatize the e f f e c t of some designs on the uncer
t a i n t y of the intercept and the r a t i o X\)/XQ.) 
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HIGHER DIMENSIONS: EXPLORATION AND VALIDATION 

Space remains f o r only a b r i e f glance at detection i n higher 
dimensions. The basic concept of hypothesis t e s t i n g and the 
cent r a l s i g n i f i c a n c e of measurement errors and c e r t a i n model as
sumptions, however, can be carri e d over d i r e c t l y from the lower 
dimensional discussions. In the following text we f i r s t examine 
the nature of dimensionality (and i t s reduction to a scalar f o r 
detection d e c i s i o n s ) , and then address the c r i t i c a l issue of 
detection l i m i t v a l i d a t i o n i n complex measurement s i t u a t i o n s . 

Physicochemical Analysis vs. Chemometric Resolution. Once we 
pass beyond the one-dimensional c a l i b r a t i o n of a pure substance, 
we enter the realm of mixtures, and the analyzing dimensions of 
chromatography, spectrometry, r e l a x a t i o n times, morphology, 
chemical " f i n g e r p r i n t i n g " , e tc. When one has s u f f i c i e n t 
r e solving power, whether by means of a simple dimension of 
extreme r e s o l u t i o n or a li n k e d ("hyphenated") seri e s of inde
pendent dimensions y i e l d i n g the product of t h e i r i n d i v i d u a l 
r esolving powers, then the problem reduces to the zero-
dimensional case. That i s , one simply measures the signal i n 
the appropriate hypercube i n multidimensional space which marks 
the l o c a t i o n of the species of i n t e r e s t . An outstanding example 
of such mu l t i s p e c t r a l sorting i s the new technique of Accele
rator Mass Spectrometry (20), which has led to a rev o l u t i o n i n 
measurements fo r radiocarbon dating, isotope geophysics, nuclear 
geology, etc. Here, for example, 1**C atoms and cl u s t e r s are 
i n i t i a l l y mass analyzed as high energy (-2 MeV) negative ions, 
a f t e r which a l l molecular fragments are destroyed and most 
electrons removed; then a d d i t i o n a l acceleration and mass 
analysis occurs with 1 i o n s , and f i n a l d i s c r i m i n a t i o n takes 
place with 8 MeV 1 i o n s on the basis of i o n i z a t i o n density 
(dE/dx) and energy (E) or range. The resolving power i s so 
enormous that one can i s o l a t e the s i g n a l of one 1^0 atom from 
the associated 1 0 1 2 -10 1 1* 1 2C atoms. A subtle dimension i n t h i s 
spectroscopy i s time, i n that the overwhelming background of 1 % 
i s eliminated by the decay of N~ during the i n i t i a l acceleration 
phase. F i n a l quantitative estimation comes from integrating 
counts i n the appropriate region of the dE/dx, E - plane. 

More commonly, we are faced with the need f o r mathematical 
r e s o l u t i o n of components, using t h e i r d i f f e r e n t patterns (or 
spectra) i n the various dimensions. That i s , l i t e r a l l y , 
mathematical analysis must supplement the chemical or physical 
a n a l y s i s . In t h i s case, we very often i n i t i a l l y lack s u f f i c i e n t 
model information for a rigorous a n a l y s i s , and a number of 
methods have evolved to "explore the data", such as p r i n c i p a l 
components and "self-modeling" analysis (21), cross c o r r e l a t i o n 
(22). Fourier and discrete (Hadamard, . . .) transforms (23), 
d i g i t a l f i l t e r i n g (24), rank a n n i h i l a t i o n (25), factor analysis 
(26), and data matrix r a t i o i n g (27). 
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5. CURRIE Dimensions of Detection in Chemical Analysis 69 

Under the best of circumstances we can express the m u l t i 
dimensional signal (y) as a l i n e a r function of the unknown 
concentrations ( x k ) , such as decaying nuclear or o p t i c a l 
spectra: 

v i j = 1 v i j k = 1 A i j k *k + ei j (12) 
where 

A i j k - U k U i ) e-tj/^k (13) 

(The f i r s t factor U k ( A i ) i s the spectrum of species-k vs 
wavelength (A^); the second i s the decay curve v£ time~Ttj) with 
mean l i f e x k.) I f the e^j are normally d i s t r i b u t e d with known 
( r e l a t i v e ) variances, and we know the spectra and l i f e t i m e s f o r 
a l l components, then weighted, l i n e a r l e a s t squares w i l l provide 
estimates for x k and °xk (28). Since each x i s a l i n e a r sum of 
the normally d i s t r i b u t e d observations, i t too i s normal, and i t 
i s (almost) straightforward to compute the decision l e v e l (XQ) 
and detection l i m i t ( x D ) for species-k. In p r i n c i p l e , the 
quantities would require the evaluation of o x as x increases 
from zero to i t s detection l i m i t . I f the signal i s r e l a t i v e l y 
weak (x<xj)) and o x i s not too r a p i d l y varying, however, we can 
approximate XQ as 1.64 o x (x = 0) and X^2XQ (assuming o i s 
known). Thus, weak estimates may be tested approximately, by 
comparing the r e l a t i v e standard error to -60$ (1/1.64). (Note 
that p r i o r knowledge of o or A j j k i s not required i f one has a 
sui t a b l e m u l t i v a r i a t e data set. Larger uncertainties and 
increased detection l i m i t s f o l l o w , however.) 

Many multidimensional problems y i e l d a d i f f e r e n t 
decomposition f o r y i j k . That i s , one acquires a data matrix 
( y i j ) i n which (presumably) the same components are present i n 
varying proportions ( x k j ) , and where each sample-j i s measured 
using the same method (or dimension)-!. Then, 

y i j « Z A i k x k J + e i j (14) 

when the number of samples i s s u b s t a n t i a l l y larger than the 
number of components, mu l t i v a r i a t e techniques such as " s e l f -
modeling" can be used to estimate both the A fs (e.g., spectra) 
and the x's. Application of such methods carry t h e i r own 
spe c i a l requirements (assumptions), and obviously the uncertain
t i e s (for x) and detection l i m i t s are s t r i c t l y dependent on the 
p a r t i c u l a r technique (algorithm) adopted. Regardless of the 
technique, however, the decision l e v e l and detection l i m i t are 
defined by the acceptable a- and 3-errors and derived from 
expressions (Equation 3a) which r e l a t e the uncertainty of x to 
i t s magnitude f o r the p a r t i c u l a r mix of components (chemical 
matrix) present. 
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70 TRACE RESIDUE ANALYSIS 

A b r i e f comment on dimensionality i s i n order at t h i s 
point. As used here, the number of dimensions i s taken equal to 
the number of subscripts on the data matrix. Thus, an o p t i c a l 
or mass or nuclear spectrum i s one-dimensional, but i f d i f f e r e n t 
samples or sampling times are involved i t i s considered two-
dimensional, as i n GC-MS. In t h i s context, we tr e a t the vector 
representation of a spectrum or a multielement analysis as 
single dimension, though i t i s frequently viewed as "a point i n 
hyperspace." 

Multidimensional Data Intercomparisons. Estimation of r e l i a b l e 
uncertainty i n t e r v a l s becomes quite complex fo r non-linear 
operations and for some of the more sophisticated multidimen
sion a l models. For t h i s reason, "chemometric" v a l i d a t i o n , using 
common, carefully-constructed t e s t data sets, i s of increasing 
importance. Data evaluation intercomparison exercises are thus 
analogous to Standard Reference Material (SRM) laboratory 
intercomparisons, except that the f i n a l , data evaluation step of 
the chemical measurement process i s being tested. 

Two extensive tests of t h i s sort have taken place during 
recent years — the f i r s t based on simulation Y-ray spectra 
generated by the International Atomic Energy Agency (IAEA; 
Reference (29)), and the second based on multisample simulated 
a i r p a r t i c u l a t e compositional data generated by NBS (30)» In 
both cases the data were constructed from r e a l i s t i c mixtures of 
known components incorporating known random er r o r s . Although 
the organizers knew the " t r u t h " , the pa r t i c i p a n t s were provided 
only with information concerning possible components, c a l i b r a 
t i o n data and random error structure ( d i s t r i b u t i o n s , 
parameters). 

Outcomes of both exercises were revealing. In each case 
wide v a r i a t i o n s i n bias, precision and detection c a p a b i l i t i e s 
were exhibited among the p a r t i c i p a n t s — i n some cases even when 
they employed the same data evaluation technique! (Certain 
[ a l l ? ] techniques are known to require the input of " s c i e n t i f i c 
judgment.") By way of i l l u s t r a t i o n , one portion of the IAEA 
intercomparison data, the "detection l i m i t " spectrum, i s given 
i n Figure 3- Of the 212 p a r t i c i p a n t s , 90$ returned r e s u l t s for 
t h i s spectrum, with the best performance (19/22 peaks c o r r e c t l y 
detected) coming from the " v i s u a l " methodI The number of 
correct i d e n t i f i c a t i o n s ranged from 2 to 19, and f a l s e p o s i t i v e s 
ranged from 0 to 2 3 . Closely following the v i s u a l method i n 
performance were those using the second deriv a t i v e and cross 
c o r r e l a t i o n . Because of the non-linear c h a r a c t e r i s t i c s of some 
of the methods applied, the d i s t r i b u t i o n of £ (e s p e c i a l l y when 
x « 0) may d i f f e r from normal. This, together with the f a c t 
that the exercise involved multiple detection decisions, adds a 
cer t a i n complication to the c a l c u l a t i o n of detection l i m i t s 
(5,31). 
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5. CURRIE Dimensions of Detection in Chemical Analysis 71 
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Figure 3 IAEA Test Spectrum for Peak Detection (Ref. 29). 
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72 TRACE RESIDUE ANALYSIS 

FINAL REMARKS 

Decision l e v e l s and detection l i m i t s are r e l a t i v e l y easy to 
define and evaluate f o r "simple" (zero dimensional) measure
ments. The t r a n s i t i o n to higher dimensions and multiple 
components introduces a number of complications and added 
assumptions related to the number and i d e n t i t y of components, 
shapes and parameters of c a l i b r a t i o n functions and spectra, and 
d i s t r i b u t i o n a l consequences of non-linear estimation. 

Major attention has been given to a one-dimensional problem 
— evaluation of detection l i m i t s for the measurement of the 
p e s t i c i d e , Fenvalerate, by gas chromatography — using an actual 
set of c a l i b r a t i o n curve data. Beyond developing the equations 
and reviewing the treatment f o r t h i s case, we encountered some 
rather s p e c i a l problems: (a) s l i g h t n o n - l i n e a r i t y i n the curve; 
(b) extra v a r i a b i l i t y (beyond r e p l i c a t i o n variance) about the 
curve, presumably due to errors i n the x-dimension (concentra
tions of standard samples); and (c) quite a high instrumental 
(software) threshold, preventing the automatic a c q u i s i t i o n of 
data f o r the blank or data i n the region of the ultimate 
detection l i m i t . This l a s t matter i s the most serious. I t i s 
perhaps representative of many problems which accompany the 
benefits of the microprocessor rev o l u t i o n — i . e . , "black boxes" 
with hidden algorithms a l l too frequently l i m i t our knowledge or 
control of the data handling phase of our measurements. In t h i s 
case, the threshold-imposed detection l i m i t exceeded the natural 
detection l i m i t by about a factor of ten, and i t forced us to 
extrapolate the data over t h i s wide i n t e r v a l to estimate the 
blank ( i n t e r c e p t ) , i t s standard deviation, and the natural 
detection l i m i t . 

The primary factor which governs the detection l i m i t , the 
uncertainty of the blank, can d i f f e r markedly depending upon 
whether i t i s estimated from a model (intercept, b a s e l i n e ) , or 
from a d i r e c t observation, or from " b l i n d " interlaboratory 
comparison. Inappropriate blank evaluation, together with 
inadequate reporting of data when at or below the detection 
l i m i t are seen as two of the most c r i t i c a l sources of informa
t i o n l o s s or information d i s t o r t i o n , with serious p o t e n t i a l 
e f f e c t s i n environmental and regulatory areas (3_) • 

Chemometric qu a l i t y assurance v i a laboratory and method 
intercomparisons of standardized test data se t s , f i n a l l y , i s 
becoming recognized as e s s e n t i a l for e s t a b l i s h i n g the v a l i d i t y 
of detection decisions and estimated detection l i m i t s , espe
c i a l l y when t r e a t i n g multidimensional data with sophisticated 
algorithms including several chemical components. 
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5. CURRIE Dimensions of Detection in Chemical Analysis 73 

APPENDIX — CALIBRATION CURVE DETECTION LIMITS 
(Calculation of Table V Results)* 

Case - a — Intercept (B) and Slope (A), Known; o y = Constant. 

B = 0.042 cm 2 A = 22.8 cm2/ng o y - 0.028 cm 2 

From Eq (5), 

o x = oy/A = 1.228X10"3 ng 

DECISION (CRITICAL) LEVEL: 

XQ « Z-I-QJOQ = 1 .645(0.00123) - 0.00202 ng [2.02 pg] 

DETECTION LIMIT: 

x D « x c + z i _ g ° X D 

Since a = 3 = 0.05, and o y = const; From Eq (7) 

x D « 2x c (K/I) (7) 

Since ^ = 0 [A-known], K and 1 = 1 , and 

x D = 2x c = 4.04 pg 

Case-b — Intercept and Slope Known; o y = f ( x ) 
B = 0.042 cm 2 A = 22.8 cm2/ng o v = 0.028 + 0.49x 

1 y 

o x = - (0.028 + 0.49x) (A1) 
A 

DECISION LEVEL: (unchanged) 

XQ = 1.645(0.028)/22.8 = 0.00202 ng [2.02 pg] 

DETECTION LIMIT: (must i t e r a t e ; but rapid convergence) 

/1 645\ 

XD^XC+ZT-^OXD-O.00202+h-^-^KO.028+0.49x D) -> 0.00419 ng [4.19 pg] 
Case-c — 0y, constant; Intercept and Slope Estimated (unweighted 
L-S) Here, for i l l u s t r a t i v e purposes, the model i s taken to be 
(r i g o r o u s l y ) : 

y = B + Ax, with B, A and Oy as i n Case-a 

*The cal c u l a t i o n s given below a l l assume that o y or oy = f ( x ) i s 
known. An approximate treatment for o-estimated would involve 
the s u b s t i t u t i o n of ts for zo, where t i s Students-t. 
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74 TRACE RESIDUE ANALYSIS 

The design (x-j through X5) i s taken to be the same as for the 
Fenvalerate c a l i b r a t i o n data, but without r e p l i c a t i o n . 

[Note; This i s a very poor design for t h i s purpose, since no 
observations are made i n the region of the detection l i m i t . 
Also, i t should be recognized that the above model gives a poor 
representation f o r the f u l l range of the c a l i b r a t i o n curve. I t 
may be quite adequate at and below the detection l i m i t , but new 
observations would be necessary to te s t t h i s conjecture.] 

From Eq (10), 

Oy 
ox -f- 1 + n + S x x 

1 / 2 ; s x x = I(x-x)2 ( 1 0) 

for {x} = (0.05, 0.25, 1., 5., 20.): 

n = 5 x = 5.26 ng S x x = 287.7 ng 2 

DECISION LEVEL: [set x * 0 i n Eq. (10)] 

/1 .645(0.028)\ / 1 (-5.26) 2\l/2 „ 
x c = 1 + - + — = 0.00230 ng 

u I 22.8 M 5 287.7 / 
[2.30 pg] 

DETECTION LIMIT: 
Z1-B n z1-8°y A 1 ( x D - X ) 2 \ l / 2 , 

The s o l u t i o n may be obtained by i t e r a t i o n of the above equation, 
or again by use of Eq (7) — since a = 3 and o y - const. 

x D = 2x c (K/I) * 2x c = 4.60 pg (7) 

(K, I * 1 because <(>A i s quite small, ca 7 x 10~ 5.) 

Case-c 1 — Non-negligible Errors i n B and A 

In order to i l l u s t r a t e the treatment of intercept and 
slope u n c e r t a i n t i e s , l e t us re-examine case-c with o y amplified 
by a factor of 100; i . e . — o y « 2.80 cm2. Obviously (Eq. 10), 
og and o 0 and XQ (and o^, <f>̂) would be scaled by the same 
fa c t o r . 

o B = 2.80 + ( O Q 2 6 J 1 / 2 = 2.80/0.296 = 1 .52 cm 2 

15 287.7 / 

O S q = Ao 0
 38 ( o y

2 + o B
2 ) 1 / 2 - 3.19 cm 2 
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5. C U R R I E Dimensions of Detection in Chemical Analysis 75 

DECISION LEVEL: 

x c - (•^) o S o * <-4rl} ( 3 - 1 9 ) = 0 , 2 3 0 ng C 2 3° p g ] 

DETECTION LIMIT: 

This could be re-computed ( i t e r a t i v e l y ) from Eq (A2), or 
d i r e c t l y from Eq (7), using K = 1 + p B A (o B/o 0) (z<(>A) and 
1 = 1 - (z<f>A)2. 

From the design {x^}, we may ca l c u l a t e p B A and <|>A: 

PBA - " x / x r m s = - 0.570 

• A A T S ^ T - ^ (1/287.7) 1 / 2 = 0.00724 

[Thus: B* ± ° B = 0.04 ± 1.52 cm2, and A ± ° A = 22.8 ± 0.2 cm2/ng] 

Therefore, z<f>A - (1.645) (0.00724) = 0.0119, and 

1 = 1 - (0.0119) 2 = 0.99986 

K - 1 + (-0.57) (0.0119) = 0.9968 

So, K/I = 0.9969, and 

x D - 2x c (K/I) = (1.9938) x c = 458. 6 Pg 
Notes 

[ i ] A s l i g h t l y more rigorous expression for o 0 may be 
obtained by keeping an a d d i t i o n a l term i n the Taylor expansion 
for the variance of the r a t i o , 

x = (y-B)/A. That i s , 

v o - o 0
2 —V(V y o

 + VB) j» w n e r e J s 1 + 34>2 ( 3 b ) A 2 A 

In the present case of <|>A = 0.00724, so the i n c l u s i o n of J 
would increase o 0 and therefore xc by l e s s than 1 part i n 101*. 
The existence of such a fa c t o r i s important i n p r i n c i p l e , 
however, for i t s i g n i f i e s the contribution of e A to the 
variance of the estimated net analyte concentration (or amount) 
even when that concentration i s zero. 

[ i i ] S t r i c t l y speaking, XQ and xn as calculated above must be 
viewed as approximations (though extremely good ones) since A i s 
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76 TRACE RESIDUE ANALYSIS 

not exactly known (denominator of Eq. 1 0 ) . A useful viewpoint i s 
to consider x c as exactly Z-J-QJ1 o 0/A, where A i s a s i n g l e , 
selected outcome 1ST! 

z 1-a'/A - z<|-A/AX = zo . 9 5/A T [ A X « "true" slope] 

I t follows that o z/z * OA/A for small OA/A. For the present 
case t h i s (<J>A) i s equal to 0 . 7 2 $ , so we f i n d a (1o) confidence 
i n t e r v a l for z<|_a of 1.645 ± 0 . 0 1 1 9 . I t follows that 

Exactly the same argument follows f or z<|_g? and 31; i . e . , 

[A confidence i n t e r v a l could be given f o r xn, f o r 3 - 5.0$ and 
f i x e d x c (a-uncertain); but a common i n t e r v a l treatment or 
sc a l i n g for both a and 3 seems more desirable.] 

[ i i i ] This example i s very close to the treatment by Hubaux 
and Vos (H & V, Ref 14). The p r i n c i p a l differences are that we 
take a f i x e d value for XQ and treat a as uncertain, whereas H & 
V f i x SQ and XQ * SQ/^ varies with the various estimates A. 
Their upper l i m i t s (or "detection l i m i t s " ) s i m i l a r l y vary with 
A, whereas again we consider 3 as uncertain but XQ f i x e d . When 
A = A, the r e s u l t s are i d e n t i c a l . 

Case-d — Response Threshold ( y ^ = 1.00); o v = const. B, A-knowi 
(This case i s t r i v i a l to c a l c u l a t e , given the considerations f or 
Case-e, so i t w i l l not be treated e x p l i c i t l y . ) 

Case-e — Response Threshold ( y ^ = 1.00); o v = f ( x ) ; B, A-known 

B = 0.042 cm 2 A = 22.8 cm2/ng o y = 0.028 + 0.49x 

DECISION LEVEL: 

yc - 1.00 cm 2 xc 1 = (yc~B)/A « 0.0420 ng [42.0 pg] 

Decisions are now made on the basis of the d i r e c t l y observed 
response (y i n comparison to yc - yth)* Though a corresponding 
concentration or "amount" l e v e l xc f may be calc u l a t e d , i t does 
not carry any d i r e c t operational meaning. 

With so high a threshold ( y c >> 0 y ) , the a-risk i s 
extremely small: 

a * 0.0500 ± 0.0012 

3 : 4.88} to 5.12$ 

1-0.042 
0.028 34.2 [a « 1] 
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5. CURRIE Dimensions of Detection in Chemical Analysis 11 

DETECTION LIMIT: 

As with the a - r i s k , the &-risk i s related to the d i s t r i b u 
t i o n of observed response (y) given x. [a: d i s t r i b u t i o n of 
y(x=0); 8: d i s t r i b u t i o n of y(x«xD).] The minimum detectable 
response ( y D ) , given the p r o b a b i l i t y (8) of f a i l i n g to exceed 
YC» i s : 

Y D - yc + zi-3°yD 

that i s , 

y D - 1.00 + 1.645 (0.028 + 0.49 x D ) 

Since x D - (y[)-B)/A, the s o l u t i o n may be found by i t e r a t i o n f o r 
y D by s u b s t i t u t i n g i n the above equation, or the e n t i r e 
equation may be transformed: 

y n-B 1 
* D " " T — = 7 (yc - B + z i - e ° y [ x D ] ) 

XD - T T T (1-0.042+1.645[0.028+0.49xD])+0.0457ng [45.7 pg] 22.o 

Case-f — yt-.h = 1.00; o y - f ( x ) ; weighted least-squares (WLS) 
Solution for the Model: 

y • B + Aq, where q * x^*12 

CB: 0.042 ± 0.024; A: 32.46 ± 0.10] 

This i s perhaps the "best s o l u t i o n for the given data set, 
and i t i s c e r t a i n l y the most i n t e r e s t i n g . I t i s not offered as 
a rigorous s o l u t i o n , however, for the lack of f i t (x 2/df * 
[9.64] 2) implies a d d i t i o n a l sources of e r r o r , which may be due 
to: a d d i t i o n a l scatter about the c a l i b r a t i o n curve (oy -
"between" component), r e s i d u a l error i n the a n a l y t i c model f o r 
the c a l i b r a t i o n function, or errors i n the "standard" x-values. 
(We believe the l a s t source of error to be the most l i k e l y f or 
t h i s data set.) For these reasons, and because we wish to avoid 
complications introduced by non-linear l e a s t squares f i t t i n g , we 
take the model y=B+Ax1-12f a n d the r e l a t i o n o y « 0.028 + 0.49x 
to be exact; and then apply l i n e a r WLS f o r the estimation of B 
and A and t h e i r standard e r r o r s . 

STANDARD ERRORS, CORRELATION, AND WEIGHTS: 

Before considering xc» and x D, i t w i l l be f r u i t f u l to 
examine the foregoing qu a n t i t i e s . This can be b e n e f i c i a l i n 
practice because a rapid c a l c u l a t i o n of the detection l i m i t can 
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78 TRACE RESIDUE ANALYSIS 

often be made (e.g., using Eq's (3b) and 5)) i f the r e s u l t s of 
WLS are a v a i l a b l e . Thus, i n Table IV we f i n d already the 
quantities og, o A which are needed for c a l c u l a t i n g the detection 
l i m i t . (Not shown, but generally also a v a i l a b l e i s the 
co r r e l a t i o n c o e f f i c i e n t p B A , which here equals -0.292.) In 
case these quantities were not d i r e c t l y a v a i l a b l e , they could be 
calculated from the general expressions given i n Table I I , as 
follows: 

Thus, for t h i s model (model-3 of Table IV): 
wi - 5/oy

 2 = 5/(0.028 + 0.49 x j ) 2 f o r 5-replicates 

(The same w's follow d i r e c t l y from the calculated response 
standard errors given i n Table I I I . ) 

B LZ w Sw(x-X w)2j |_1972 91.18 J 3 

o A = [1/sw(x-X w)2]1/2 » 1//94.18 - 0.103 

PBA = " *w/̂ f= "0.292 w 
DECISION LEVEL: 

As with Case-e, the response decision l e v e l i s pre-fixed: 

y-B 1-0.042 yc = 1-00 and z<|_a * — - = ^ n =34.2 
o vo 0.028 

Again, a « 1, but now i t s value i s uncertain, because of the 
uncertainty i n B. S p e c i f i c a l l y , the standard deviation of z<|_a 

i s OB/oyO « 0.024/0.028. 

Thus, we estimate 

z i - a = 34.2 ± 0.9 

F i n a l l y , cfef -(y c-1b/fc and xc' = ( q b ' ) 1 / 1 - 1 2 - 0.043 ng 
[43.0 pg] 

DETECTION LIMIT: 

YD - YC + z ^ o y n = y c + z(0.028 + 0.49x D) 

Transforming: q D = (yi)-B)/A = x n 1 - 1 2 , we have: 

1.000-0.042+1.645(0.028+0.49xD) 
XD 

yc-^+z^eQyp 
A ]1/1 .12 • 32.46 

1/1.12 
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5. CURRIE Dimensions of Detection in Chemical Analysis 
79 

This equation may be solved by i t e r a t i o n to y i e l d , 

x D = 0.0464 ng [46.4 pg] 

Unlike the preceding case where B and A were known, we now 
have only an estimated x-detection l i m i t , even though yp i s 
(almost) known. ("Almost", because of the x-dependence of o y. 
Though t h i s i s a second order ef f e c t when there i s a high 
threshold, i t would be preferable i n t h i s case to estimate o y as 
a function of y rather than x. Then y^ would be quite 
independent of B and A.) 

DETECTION LIMIT CONFIDENCE INTERVAL: 

A confidence i n t e r v a l for x D may be calculated from vp, 
using Eq (11), upon the s u b s t i t u t i o n of'q" for x. That i s 

2 2 2 4> = <j> + 2pBA<f>A*B + i|; (11') q A B 
where 

*B = <J>B i ——V <t>B| — V n d * X D = *q / K 1 2 

yvD-B J y s D J D 

Using the previous r e s u l t s , we f i n d 

PBA = -0.292 

SD - YD-B - yc-B+zi-3°VD * 1-.042+1.645(.028+0.49[0.0464]) 

= <|>B (jTJ= ° B / S d * °-0243/1 .041 = 0.0233 

•A = °A/A * 0.103/32.46 = 0.00317 

Thus, <J>qD . 0.0226; so c|>XD =* 0.0202 
The ("1o") confidence i n t e r v a l for the detection l i m i t i s thus, 

x D: 46.4 ± 0.9l| pg 

A symmetric and normal confidence i n t e r v a l i s a good 
approximation, since the uncertainty i s dominated by 03 
(numerator of Eq 3b). 

F i n a l l y , _if the poor f i t simply r e f l e c t e d proportionately 
extra y-variance, then: 

* i + Wi/(9.64) 2 and Oy + o y • (9.64)//5 
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80 TRACE RESIDUE ANALYSIS 

and <|>A, <j>B would be increased by a f a c t o r of 9.64 

The r e s u l t i n g estimate f o r xp would be 

x D : 59.1 ± 1 1 . 5 pg 

This r e s u l t , however, should not be taken too s e r i o u s l y , because 
the poor f i t may not be simply r e l a t e d to e x t r a y - v a r i a n c e . 
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6 
Introduction to the Theory of Correlation 
Chromatography 

RAYMOND ANNINO 
The Foxboro Company, Foxboro, MA 02035 

The technique of correlation chromatography is des
cribed through text and figures in a step-by-step 
manner. The desc r ip t ion explains how a Pseudo 
Random Binary Sequence (PRBS) can control multiple 
and overlapped input injections into a chromatograph 
and again be used to sort out the detector data to 
give a correlogram. Correlograms mimic chromato-
grams but represent chromatographic data at a much 
higher sens i t iv i ty . The method i s used to immensely 
increase the signal-to-noise rat io of a chromato
graph. Problems in sampling and non-linearity are 
also discussed. 

One of the d i f f i c u l t i e s i n w r i t i n g about Correlation Chromato
graphy (CC) i s i n providing the reader with enough conceptual 
understanding of t h i s elegant procedure to appreciate both i t s 
p o t e n t i a l and the aggravating problems which s t i l l hamper i t s use. 
Many of us require a physical model to aid us i n understanding the 
elements of a problem. A mathematical formula i s of l i t t l e help 
unless we can associate i t with some physical p i c t u r e . For t h i s 
reason, we w i l l attempt i n t h i s paper a l a r g e l y p i c t o r i a l but 
s t i l l rigorous presentation of Correlation Chromatography (CC). 

Background 

Before proceeding to the main subject of CC, i t i s necessary f o r 
the reader to gain some understanding f o r the basic process of 
"c o r r e l a t i o n . " C o r r e l a t i o n i s a mathematical procedure f o r mea
suring the s i m i l a r i t y of two d i f f e r e n t signals or the s p e c t r a l 
c h a r a c t e r i s t i c s of one s i g n a l . 

Consider the two time-varying signals shown i n Figure 1. Is 
there any s i m i l a r i t y between the two signals? To answer t h i s 
question we might cut out the s i g n a l lb so that a f t e r we place i t 
underneath the other we can s h i f t i t a l i t t l e along the x axis 
(which i s a time a x i s ) , to v i s u a l l y compare i t with the other. I f 

0097-6156/ 85/ 0284-O083S06.00/ 0 
© 1985 American Chemical Society 
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84 TRACE RESIDUE ANALYSIS 

Figure 1. Signals to be compared. Signal a. and b. are the 
same. Signal b. has been delayed S units i n time. 
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6. ANNINO Introduction to the Theory of Correlation Chromatography 85 

we were to do t h i s , we would f i n d that when we had s h i f t e d i t S 
u n i t s , the two signals would appear to be i d e n t i c a l . Our conclu
sion i s that the only difference i n the two signals i s that one of 
them i s s h i f t e d i n time with respect to the other one. 

How can we document t h i s comparison procedure mathematically? 
Suppose we again examine F i g u r e 1. Let us d i g i t i z e the two 
signals i n t o the units we have shown along the x - a x i s . Now at 
each of these units multipy the i n t e n s i t y value of one s i g n a l with 
the corresponding i n t e n s i t y value of the other. Do t h i s f o r each 
d i g i t i z e d u n i t , sum a l l of these i n d i v i d u a l products and divide by 
the number of u n i t s , T, i n the sum to obtain an average value for 
a l l these products. To express t h i s operation mathematically we 
wri t e : 

t=T 

R x y (0) = 1/T x ( t ) y ( t ) 

t=0 

The number obtained i n t h i s way i s c a l l e d a c o r r e l a t i o n 
c o e f f i c i e n t , R , and i t s magnitude furnishes us with a measure of 
the c o r r e l a t i o n ^ between the two s i g n a l s . Small values of the 
c o r r e l a t i o n c o e f f i c i e n t i n d i c a t e l i t t l e or no c o r r e l a t i o n while 
large values are obtained when the two signals match. What we 
would l i k e to do now i s s h i f t the s i g n a l i n the same manner that 
we did when we cut i t out, and repeat the above m u l t i p l i c a t i o n , 
summing, and averaging procedure to calcu l a t e another c o r r e l a t i o n 
c o e f f i c i e n t . In other words, each i n t e n s i t y value of s i g n a l l a at 
a c e r t a i n time value, t , w i l l be m u l t i p l i e d with the i n t e n s i t y 
value i n lb found at t -1. We w i l l proceed with our m u l t i p l i c a 
t i o n , summing, and averaging i n t h i s manner fo r a l l values of t 
wit h i n the i n t e r v a l we have selected for examination, and thus 
produce a new value for the c o r r e l a t i o n c o e f f i c i e n t , R , at t h i s 
time s h i f t of one u n i t . Thus we have: X ^ 

R (1) xy 1/T 

t=T 

t=0 

( t - l ) y ( t ) 

We continue t h i s s h i f t i n g and c a l c u l a t i o n process u n t i l 
we have s h i f t e d the desired i n t e r v a l . Our process i s one of 
moving past events i n s i g n a l l b in t o the present f o r compari
son with l a . I f we c a l l the time s h i f t tau, we can write a 
general expression f o r the c a l c u l a t i o n of the c o r r e l a t i o n 
c o e f f i c i e n t at any value of tau. 
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86 TRACE RESIDUE ANALYSIS 

t=T 

R xy ( r ) = 1/T x ( t - r ) y ( t ) 

t=0 

The l i m i t of t h i s expression gives us the f a m i l i a r d e f i n i t i o n 
f o r the cr o s s - c o r r e l a t i o n function with the l i m i t s of in t e g r a t i o n 
redefined for a d i s t r i b u t i o n about zero. 

Following the c a l c u l a t i o n of the c o r r e l a t i o n c o e f f i c i e n t at a 
number of values of tau, we can plot the c o r r e l a t i o n c o e f f i c i e n t s 
against tau. Such a plot might look l i k e the one shown i n Figure 
2. Notice that the value of the c o r r e l a t i o n c o e f f i c i e n t i s small 
except at the time s h i f t where everything i n both signals l i n e s 
up. 

Suppose the signals i n Figure 1 were random i n nature. We 
know from our elementary s t a t i s t i c s t h a t i f we had a set of 
t o t a l l y random numbers centered around some value, say zero, that 
che average value of the sum of these numbers would be zero. Thus, 
for a random s i g n a l centered about zero our above operation f o r 
c a l c u l a t i n g the c o r r e l a t i o n c o e f f i c i e n t produces a c o r r e l a t i o n 
c o e f f i c i e n t close to zero (the value about which the s i g n a l i s 
centered) except when the signals are l i n e d up. Since these are 
random s i g n a l s , t h i s w i l l occur at only one value of tau, the time 
delay between the two s i g n a l s . Our c o r r e l a t i o n plot would then 
look l i k e the one i n Figure 3. Notice that t h i s c o r r e l a t i o n plot 
i s noise-free as compared to the one shown i n Figure 2 where some 
c o r r e l a t i o n e x i s t s at a number of time s h i f t s . This noise-free 
correlogram i s a c h a r a c t e r i s t i c of the cross- or autocorrelation 
of a random s i g n a l . 

C o r r e l a t i o n Chromatography 

Single Peak CC. Let us now turn our attention to mating t h i s pro
cedure with chromatography i n an e f f o r t to increase the detector 
s e n s i t i v i t y . 

Suppose we were to set up a chromatograph i n such a way that 
e i t h e r sample or c a r r i e r gas w i l l be flowing through the column. 
This set up i s shown schematically i n Figure 4. Which gas i s 
being i n j e c t e d w i l l be determined by the p o s i t i o n of the two 
po s i t i o n valve, V. A r b i t r a r i l y , we w i l l l a b e l one p o s i t i o n of 

T/2 

R < r ) = l i m (1/T) 
X y T —> oo 

x ( t - r ) y ( t ) d t 

-T/2 
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ANNINO Introduction to the Theory of Correlation Chromatography 

JlUU-
s 

Figure 2. Plot of correlation coefficients vs. tau. 

4> (T) 

Figure 3. Plot of correlation coefficients vs. tau for 
random signals S units out of phase. 
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88 TRACE RESIDUE ANALYSIS 

Figure 4. Schematic of a correlation chromatograph.  P
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6. A N N I N O Introduction to the Theory of Correlation Chromatography 89 

t h i s v a l v e as 1, (sample gas being i n j e c t e d ) and the other 
p o s i t i o n as -1, (pure c a r r i e r gas being i n j e c t e d ) . Assume the 
single component i n the sample reservoir elutes with a time of 3 
units and a s i g n a l height of 3D u n i t s . 

Also, i n t h i s example, i t i s assumed that the column w i l l not 
d i s t o r t the s i g n a l — only delay i t i n time. Thus, i f we were to 
switch the valve according to the PRBS code shown i n Figure 5a, we 
would expect, some time l a t e r , to see a detector s i g n a l such as 
that also shown i n Figure 5a. I f we compare t h i s output s i g n a l to 
the input code, we see that there i s not a one-to-one correspond
ence at a given time. Obviously the detector s i g n a l i s not going 
to be exactly synchronized with the valve p o s i t i o n code because of 
the column delay. 

Let us now cross-correlate the detector s i g n a l with the valve 
p o s i t i o n code i n the manner j u s t discussed f o r the signals of 
Figure 1. We have i l l u s t r a t e d t h i s procedure i n Figure 5b. An 
array of detector signals has been memorized and the array of 
valve positions associated i n time with detector signals i s shown 
above i t . If you m u l t i p l y each detector s i g n a l with the valve 
p o s i t i o n shown above i t and sum each of these products, you w i l l 
obtain the c o r r e l a t i o n c o e f f i c i e n t shown at the r i g h t . The valve 
p o s i t i o n code i s then s h i f t e d one code unit (given by the value of 
tau) and the process repeated. The plot of these c o r r e l a t i o n 
c o e f f i c i e n t s vs. tau gives us the correlogram shown i n Figure 5c. 

We have j u s t performed c o r r e l a t i o n chromatography. 
Notice that t h i s procedure converts the time varying detector 

s i g n a l to a s i n g l e pulse even though we are feeding sample to the 
column more or l e s s c o n t i n u o u s l y . This pulse i s , i n t h e o r y , 
i d e n t i c a l to a conventional single pulse chromatogram. A c t u a l l y , 
the pulse i s modified i n t o a Gausian-like s i g n a l by the column 
j u s t as the column modifies a si n g l e pulse chromatogram. However, 
there i s an important d i f f e r e n c e . Because i t i s constructed from 
a number of single pulses and represents the average of these 
s i n g l e p u lse chromatograms, i t , i n t h e o r y , has a much l a r g e r 
signal-to-noise r a t i o than i t s si n g l e pulse analog. Again using 
our elementary s t a t i s t i c s we predict that the s i g n a l strength has 
been increased by the number of sample i n j e c t i o n s made during the 
period of the code, while the noise has only increased by the 
square root of the number of i n j e c t i o n s . This then i s the basis 
for using t h i s procedure f o r trace analysis where one i s usually 
working at the l i m i t of the signal-to-noise r a t i o of the system. 

One could consider the correlogram to be a snapshot of past 
events. We must memorize the detector signals and valve positions 
over a period of time and then c a l c u l a t e a correlogram with t h i s 
data. To obtain a more up-to-date snapshot we must return to the 
a r r a y of data and c a l c u l a t e another correlogram based on the 
newest information which has been placed i n the array. 

As mentioned previously, the c o r r e l a t i o n of random signals 
y i e l d s clean baselines. The valve p o s i t i o n code shown i n Figure 
5a has been chosen with t h i s property i n mind. It i s from a set 
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90 TRACE RESIDUE ANALYSIS 

a. 
CHROMATOGRAPHIC DETECTOR SIGNAL 

TIME-

3 
2 D 
I 

—•I * - LENGTH OF COOE UNIT 
. . ' ' , R _ , , , T . I SAMPLE INJECT 

I L T L J LTL_J LTL_J 1. CARRIER INJECT 
PRBS COMMANO SIGNAL TO VALVE 

CALCULATION OF CORRELATION COEFFICIENTS 

for) 

b. 1 <jfc><T> 
VALVE POSITION 
DETECTOR SIGNAL 

T«0 - 4 - - 4 4 4 
3 3 3 0 3 0 0 0 

T«l + ~ 4 4 4 
3 3 3 0 3 0 0 0 

T»2 4 -1- - 4- - - 4 
3 3 3 0 3 0 0 0 

T«3 4 4 +--4 
3 3 3 0 3 0 0 12 

T«4 - 4 4 4 - 4 -
3 3 3 0 3 0 0 0 

T«5 - - 4 + 
3 3 3 0 3 0 0 0 

T •« 4 1-4 4 -
3 3 3 0 3 0 0 O 

"5—r 

Figure 5. Construction of correlograms. a. Detector 
s i g n a l generated by the sample injected over a period of 
time according to the PRBS shown below, b. Calculation of 
c o r r e l a t i o n c o e f f i c i e n t s , c. Correlogram. 
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6. ANNINO Introduction to the Theory of Correlation Chromatography 91 

of codes which are c a l l e d pseudo random binary sequences ( P R B S ) , 
and can be generated on demand from published algorithms 0»2»3)« 
These codes have the i n t e r e s t i n g property that within the i n t e r v a l 
defined by the sequence they behave l i k e a t o t a l l y random sequence 
of binary events. This i s a convenient code to use. I t depicts 
binary events which i s exactly our s i t u a t i o n with a sample valve; 
i t i s e i t h e r i n j e c t i n g sample or i t i s not. The shortest time 
i n t e r v a l f o r i n j e c t i o n w i l l e s t a b l i s h the primary unit of the code 
and the selected code w i l l determine the sequence of these u n i t s . 
A number of codes can be generated which w i l l a l l o w us the 
f l e x i b i l i t y to select the desired r e s o l u t i o n w i t h i n the sequence. 

C o r r e l a t i o n of the code with i t s e l f (autocorrelation) y i e l d s 
o n l y one c o r r e l a t i o n p o i n t i n the time domain d e f i n e d by the 
sequence and the unit code i n t e r v a l (see Figure 5c) and an other
wise clean baseline. Since the detector i n our chromatogram j u s t 
follows what the sample valve i s doing, i t also should be a pseudo 
random sequence and the c r o s s - c o r r e l a t i o n of input and output i s 
r e a l l y an autocorrelation and thus y i e l d s the s i n g l e pulse 
correlogram with an otherwise clean baseline. 

Suppose the detector s i g n a l contains random noise which has 
been contributed from other parts of the system. This random 
noise has a d i f f e r e n t source from our a r t i f i c i a l l y created, ran
domly varying detector s i g n a l ; therefore i t i s not correlatable 
with ours. I t i s not i n phase with our s i g n a l . Our procedure f o r 
c a l c u l a t i n g the correlogram averages t h i s noise to zero. This 
w i l l only be true f o r t r u l y random noise and provided that you 
have selected a large enough period f o r the c a l c u l a t i o n , i . e . a 
s t a t i s t i c a l l y v a l i d sample. In p r a c t i c e , t h i s means that you must 
select a PRBS which i s long enough so that the data array contains 
enough samples to average out the random noise. 

M u l t i p l e Peaks. F i n a l l y , we must answer the question of how t h i s 
method y i e l d s chromatograms containing many peaks and whether the 
correlogram i n t e n s i t y i s related to component concentration? 

Notice i n our previous examples our detector s i g n a l has been 
given the a r b i t r a r y units of 3D. The type (voltage, current) and 
i n t e n s i t y of t h i s output w i l l depend on the p a r t i c u l a r detector 
(TC, FID, EC, etc.) and the concentration of the species i n the 
sample. The input code i s j u s t that. I t i s not a s i g n a l . The +1 
and -1 values are used to d e p i c t a p o s i t i o n of the i n j e c t i o n 
valve. 

I f the sample contains more than one species with d i f f e r e n t 
retention times, the e f f e c t of the column w i l l be to transmit the 
same version of the switching code but at d i f f e r e n t delay times, 
according to the retention times of each of the components. This 
can be v i s u a l i z e d then as a number of delayed versions of the 
sampling pattern transmitted through the column simultaneously — 
a l l o r i g i n a t i n g simultaneously from the same i n j e c t i o n code. 

We w i l l s e l e c t a PRBS of 15 f o r t h i s next example f o r 
increased r e s o l u t i o n of the two solutes whose separation we are 
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92 TRACE RESIDUE ANALYSIS 

going to demonstrate. Consider, for example, a sample composed of 
two components. Component A has a retention time of 3 and, i f 
injected over one of the time units of our code (a single pulse), 
would y i e l d a detector s i g n a l of 2. S i m i l a r l y , component B has a 
retention time of 7 and a sin g l e pulse detector i n t e n s i t y of 7. 

I f we were to use two detectors, one s p e c i f i c for only A and 
one s p e c i f i c for only B, the signals would appear, s h i f t e d i n 
time, as shown i n Figure 6a. The po s i t i o n of the i n j e c t i o n valve 
at the time these detector values were recorded i s also shown. 
S i m i l a r l y , i f we were to use on non-specific detector, the sum of 
the signals due to A and B would y i e l d the detector s i g n a l labeled 
i n Figure 6a as Combined Signal. 

Now l e t us take a time p e r i o d of d e t e c t o r s i g n a l s l a r g e 
enough to encompass the l e n g t h of the pseudo random b i n a r y 
sequence i n j e c t i o n code which produced i t , and cross-correlate i t 
with t h i s i n j e c t i o n code of -1 and 1. 

We have shown i n Figure 6a an array of the combined s i g n a l 
values f o r one sequence of our code and underneath, i n Figure 6b, 
the corresponding positions of the sample valve at the moment each 
detector value was recorded. Also, we have calculated a value for 
the c o r r e l a t i o n c o e f f i c i e n t at each value of tau as we s h i f t e d the 
i n j e c t i o n code from the past i n t o the present. F i n a l l y , we have 
p l o t t e d the value of the c o r r e l a t i o n c o e f f i c i e n t s v s . tau i n 
Figure 6c. 

Notice the simple c r o s s - c o r r e l a t i o n operation has deconvo
l v e d the two chromatograms from the rather nasty detector s i g n a l 
of overlapped chromatographic peaks. Also, i f you examine the 
PRBS i n j e c t i o n code of 15 which we used, you w i l l see that there 
are a t o t a l of eight +1 positions and seven -1 po s i t i o n s . Thus we 
have injected sample eight times before repeating our code. The 
summation procedure at time s h i f t s of 3 and 7 should r e f l e c t t h i s , 
and they do. A value of 16 i s obtained at tau equals 3. This i s 
e i g h t times the s i n g l e pulse response of 2 obtained f o r t h i s 
compound at t h i s concentration. S i m i l a r l y , at tau equal to 7, 
compound B has a c o r r e l a t i o n c o e f f i c i e n t of 56 ( e i g h t times 
seven)• N o t i c e that we have set t h i s example up so that the 
average value of the detector s i g n a l baseline i s zero and a simple 
summation accomplishes the averaging. 

Noise A d d i t i o n . To i l l u s t r a t e the r e d u c t i o n of out-of-phase 
random noise which i s possible with t h i s procedure, l e t us put 
some random noise on the sin g l e pulse chromatogram of the sample 
used f o r the above example. We have plotted the single pulse 
chromatogram with a noise band (minimum to maximum noise signal) 
of 2 i n Figure 7b. A s i m i l a r noise band added to the s i g n a l from 
our c o r r e l a t i o n detector shown i n Figure 6a produces the si g n a l 
shown i n Figure 7a. The noise s i g n a l i s also reproduced here, and 
you can see i t i s r e a l l y a s h i f t e d PRBS code of 15. This was done 
only to keep the ca l c u l a t i o n s within the paper and pen c i l domain 
as we have throughout t h i s paper. The r e s u l t s w i l l be the same 
for t r u l y random noise. 
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6. A N N I N O Introduction to the Theory of Correlation Chromatography 93 

4, PRBS Valve 
-« Command 
2 
Detector A 

Detector B 

j i j i 

Lr 

n 

Lr 
b. 

n 
0 2 7 9 2 9 2 LT 

Combined Signal 

T POSITION OF SHIFTED PRBS 

0 f — + + . + _ + H f 0 
1 - i + 4-4--4-4--I-4- 0 
2 4- -M-+ — + -4 4- 4 - 0 
3 4---4-4-4-4-4-44- l« 
4 4 4- 4 4 - + - 4 4 4 0 
5 4- + f - - 4H—+ 4 0 
« 4- 4 4 4-- + 4-H 4 0 
7 -t +4-4- 4 4-4-f- - ss 
• - 4444- 4 - - 4 4 - 4 - 0 
9 + -4444 4- 4 4 - 0 

Figure 6. Construction of a correlogram f or a two component 
sample. 
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TRACE RESIDUE ANALYSIS 

n_r-Ln_r ji—ru-u 1 \:\ PRBS Code 

n 

Lr 

n 

Lr 

Jl 

LTIT 

J l 

0 2 7 t 2 • 2 

n_ruu i_Ji_mj i_r: 

Combined Signal 

Noise 

SINSLE PULSE CHROMATOMAM 
WITH NOISE AOOEO 

Jl 0 J 2 2 
lr u 

II 2 4 4 1 2 • 4 

Signal 
with Added Noise 

Time 

Figure 7. Addition of noise to the detector signal of a 
single pulse chromatographic run and a run using a PRBS 
inject i o n sequence. 
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6. ANNINO Introduction to the Theory of Correlation Chromatography 95 

We have kept the phases the same so you can cross-correlate 
the s h i f t table shown i n Figure 6b with the noisy combined detec
tor s i g n a l shown i n Figure 7a to obtain the corresponding c o r r e l a 
t i o n c o e f f i c i e n t s . 

Exactly the same c o r r e l a t i o n c o e f f i c i e n t s are obtained f o r 
the s i g n a l i n Figure 7a as for the noise free detector s i g n a l 
shown i n Figure 6a. The correlograms are the same. The noise has 
vanished! C l e a r l y , the correlogram of Figure 6c represents a much 
better data set from which to ca l c u l a t e the concentration of the 
two components than the chromatogram shown i n Figure 7b. You can 
understand the excitement of e a r l y researchers i n the f i e l d when 
they r e a l i z e d the p o t e n t i a l of t h i s technique. Large increases i n 
the signal-to-noise r a t i o were possible simply by encoding the 
sample i n j e c t i o n s properly. Also, i t might be possible to turn 
the batch-operated chromatograph i n t o one g i v i n g more or l e s s con
tinuous answers. The c a l c u l a t i o n s required to decode the r e s u l t s 
were t r i v i a l and thus would not require a large computing power. 

Problems 

Now that we have discussed the t h e o r e t i c a l basis for c o r r e l a t i o n 
chromatography, l e t us examine some areas which may cause problems 
or at l e a s t , i n p r a c t i c e , l i m i t i t s a p p l i c a t i o n . 

Sampling. Notice that the c o r r e l a t i o n procedure produces a t r i 
angle whose base width i s two basic time units wide. In order not 
to degrade the peak shape produced by a si n g l e pulse width, our 
t r i a n g l e should be of the same width. Thus, i n trace analysis we 
are l i m i t e d to a unit code width which i s one h a l f the sample 
volume allowed for a single pulse chromatogram of the same sample. 
This may have implications on the sampling switch design i f very 
fa s t switching i s necessary to maintain r e s o l u t i o n of c l o s e l y 
spaced peaks. In t h i s regard, we concluded i n e a r l i e r work (4) 
that ensemble averaging a number of single pulse chromatograms 
might be a more e f f e c t i v e way of increasing signal-to-noise r a t i o s 
i n f a s t chromatography of c l o s e l y spaced peaks than by using CC. 

In s e l e c t i n g parameters for c o r r e l a t i o n work, two factors 
need to be considered. F i r s t , the length of the pseudo random 
sequence i s determined; i t must be longer than the longest e l u t i n g 
peak. Second, the maximum unit pulse width i s calculated to main
t a i n a given chromatographic i n t e g r i t y . Both of these factors are 
then used as c r i t e r i a to select the pseudo random code that one 
must use i n a p a r t i c u l a r a n a l y s i s . 

The sample valve must be made so that i t can be activated 
automatically at the command of the switching code. Also, i n 
terms of hardware design, CC demands a r e l i a b l e sample switch 
which must switch many more times over a given analysis cycle than 
i t would have to i f run i n the single pulse chromatography mode. 
Since the sampling valve i s probably the most un r e l i a b l e component 
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96 TRACE RESIDUE ANALYSIS 

of an automated chromatograph, you can understand our i n t e r e s t i n 
no moving part f l u i d i c v a l v e s ( 4 , 5 ) . Other r e s e a r c h e r s have 
recognized the sample valve problem and offered t h e i r own c o n t r i 
butions (£, 7). 

Non-linearity. One of the most aggravating problems i n CC which 
was recognized e a r l y i n the re s e a r c h i s a s s o c i a t e d w i t h the 
so-called non-stationary nature of the system. In a l l of the 
examples shown above we have assumed l i n e a r i t y of system response. 
This means that peak shapes do not change with concentration ( a l l 
the moments of the peak remain the same); only the magnitude of 
the response changes and t h i s does so l i n e a r l y with the concentra
t i o n . Only i f t h i s property i s maintained w i l l our m u l t i p l i c a 
t i o n , summing and averaging work out to cancel everything except 
at the correct time s h i f t . Otherwise, the operation produces 
s i g n i f i c a n t values f o r the c o r r e l a t i o n c o e f f i c i e n t s at other 
points, and therefore, a noisy baseline. We have termed t h i s 
noise " c o r r e l a t i o n noise** to i d e n t i f y i t s source. I t i s a noise 
component which w i l l not be reduced by cross c o r r e l a t i o n . I t i s 
always present to some extent i n CC and can many times be confused 
with r e a l peaks. 

A l s o , the concentration of the analyzed species must remain 
the same d u r i n g the time of the a n a l y s i s o r , a g a i n , we w i l l 
produce c o r r e l a t i o n noise. 

Further Discussion. For a det a i l e d explanation of the problems of 
CC, backed by both experimental data and the r e s u l t s of computer 
modeling, you are referred to our f i r s t papers on the subject 
(8,9). On the basis of the r e s u l t s , we proposed at that time 
guidelines f o r the e f f e c t i v e use of t h i s technique which I believe 
are s t i l l v a l i d . We have repeated some of these ideas i n a 
l a r g e l y t u t o r i a l paper that we published some time l a t e r (3) and 
i n a review of s i g n a l enhancement techniques (10)• 

A l l of the above problems have been demonstrated i n the 
l i t e r a t u r e . You can v e r i f y them yourself by taking the examples 
we have worked, moving the p o s i t i o n of some of the peaks i n the 
standing waves of each of the components and then adding them 
together to produce the f i n a l detector s i g n a l . Cross-correlation 
of t h i s detector s i g n a l with the sampling code w i l l not produce a 
nice clean correlogram. S i m i l a r l y , you can demonstrate that the 
same thing happens i f the i n t e n s i t y of the standing waves changes 
during the run, as would be the case i f the concentration of the 
sample species were changing. 

Burke and h i s students (11) have published a proposal f o r 
s o l v i n g the n o n - l i n e a r i t y problem a s s o c i a t e d w i t h CC and the 
consequent c o r r e l a t i o n noise. They used a constant frequency 
m u l t i p l e i n j e c t i o n s i g n a l ; while t h i s occurred, t h i s frequency was 
modulated. Before each i n j e c t i o n , a random number was generated 
to determine the magnitude and sign of the deviation from the 
c a r r i e r frequency for the next i n j e c t i o n time. Thus, the next 
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6. ANNINO Introduction to the Theory of Correlation Chromatography 97 

i n j e c t i o n would come a l i t t l e e a r l i e r or a l i t t l e l a t e r than the 
time dictated by the base frequency governing the m u l t i p l e i n j e c 
t i o n . By t h i s means, the sample concentration i n the column was 
kept at an almost constant value and, thus, w i t h i n the l i n e a r 
range of the isotherm. This was an extremely clever proposal, and 
i t i s not c l e a r why i t did not work better than i t d i d , since 
c o r r e l a t i o n noise was s t i l l present. I t may be that t h i s was due 
to the hardware implementation of the technique rather than a 
conceptual problem. 

Recognizing the problems associated with CC, allows one to 
s e l e c t the a p p l i c a t i o n f o r which i t i s best s u i t e d . Trace 
analysis using CC i s a natural since i t i s under these very d i l u t e 
s o l u t i o n conditions that chromatography i s apt to be a l i n e a r 
phenonema. However, as we have pointed out a number of times, i t 
only makes sense i f the trace material i s dissolved i n the solvent 
that we are using as c a r r i e r f l u i d . In gas chromatography, t h i s 
means ambient a i r analysis with nitrogen as a c a r r i e r gas (12) and 
i n l i q u i d chromatography i t probably means water p o l l u t i o n a p p l i 
cations with water as a c a r r i e r f l u i d (13), although there may be 
some other applications i n organic solvents which f o r t u i t o u s l y can 
be used as a c a r r i e r f l u i d or which w i l l not change t h e i r chroma
tographic solvent properties when d i l u t e d by one-half (remember, 
i n essence, we i n j e c t our sample f o r 50% of the time and pure 
c a r r i e r f l u i d f or the rest of the time)• 

The model we have presented for CC appears to be a s i m p l i f i e d 
representation, but i t i s quite rigorous i n terms of the c o r r e l a 
t i o n p r o c e s s . I t can be f u r t h e r r e f i n e d to y i e l d the common 
chromatographic peak shapes by convoluting each unit pulse with a 
Gausian-like function before summing them to give the detector 
s i g n a l . The output of t h i s simple model then looks l i k e that 
shown i n Figure 8. However, the above operation merely makes the 
appearance of the correlogram more chromatographic-like; i t does 
not make i t a model which w i l l mimic the r e s u l t s obtained i n the 
laboratory. The computer model we have used to demonstrate the 
laboratory experimental r e s u l t s i n CC was one we had previously 
developed to explain the anomolies i n f i n i t e d ifference chromato
graphy (14) which we modified to take the encoded sample input of 
a c o r r e l a t i o n chromatography 

For the reader who i s interested i n pursuing the mathematical 
d e t a i l s of CC, I recommend the papers of Smit and h i s co-workers 
(15) • These researchers published e a r l y i n the area of CC (16) 
and continue to contribute r e g u l a r l y to the f i e l d (17). P h i l l i p s 
has also been active i n the f i e l d of CC, which he considers to be 
a subset of what he c a l l s , multiplex chromatography (18). Some 
workers have used on-line c o r r e l a t i o n chromatography to study the 
thermal decomposition of polymers and compared the r e s u l t s against 
those using conventional i n j e c t i o n procedures (19), while others 
have applied i t to the study of gas-solid adsorption (20)• 

In a d d i t i o n , for those of you who may wish to do some further 
reading on the g e n e r a l s u b j e c t of c o r r e l a t i o n i n a n a l y t i c a l 
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98 TRACE RESIDUE ANALYSIS 

OUTPUT 
Figure 8. Plots of computer generated representation of the 
input code, x ( t ) , detector output, y ( t ) , and f i n a l c o r r e l o -
gram output, </>(t), fo r a sample containing 18 and 82% con
centration of two components. Reproduced with permission 
from Ref. 9, copyright 1973, "American Chemical Society." 
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6. ANNINO Introduction to the Theory of Correlation Chromatography 99 

chemistry, the chapter by Ho r l i c k and H i e f t j e (21) i s an excellent 
overview. 
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7 
Developments in Correlation Chromatography 
Application in Trace Analysis 

H. C. SMIT 

Laboratory for Analytical Chemistry, University of Amsterdam, Nieuwe Achtergracht 166, 
1018 WV Amsterdam, The Netherlands 

The use of the chemometric technique of correlation 
chromatography has been demonstrated in l iquid 
chromatography. The sensi t iv i ty compared to normal 
l iquid chromatography has been extended up to 100 
fold . An analysis time period of 2 hours was 
required. Estimated time for conventional 
enhancement to a similar signal-to-noise ratio is 50 
days. Correlograms very similar in shape to 
chromatograms of 50 fold higher in component 
concentration are shown. The advantages of 
correlation chromatography in ultra trace analysis 
are unmistakable despite the re la t ive ly large amount 
of sample needed for high enhancement of signal . 

The i n s t r u m e n t a l a n a l y t i c a l t e c h n i q u e s , d e v e l o p e d i n t h e l a s t 
t h r e e o r f o u r d e c a d e s , a r e a l m o s t a l l b a s e d o n t h e l i m i t e d s i g n a l 
a n d d a t a p r o c e s s i n g c a p a b i l i t i e s o f r e l a t i v e l y s i m p l e a n a l o g 
i n s t r u m e n t s , a n d u t i l i z e a l i m i t e d o r s i m p l e t h e o r e t i c a l b a s i s f o r 
c a l c u l a t i o n s . A p a r t f r o m t h e r a t h e r a d v a n c e d a p p l i c a t i o n o f 
s t a t i s t i c s , o n l y a m o d e s t u s e o f m a t h e m a t i c a l t e c h n i q u e s i n 
a n a l y t i c a l c h e m i s t r y h a s b e e n u s e d i n t h e s e t r a d i t i o n a l a n a l y s e s . 

The c o m p u t e r , w i t h i t s e n o r m o u s p o w e r i n d a t a p r o c e s s i n g a n d 
i t s p o s s i b i l i t i e s i n a u t o m a t i o n a n d c o n t r o l , h a s a d d e d a new 
d i m e n s i o n b o t h t o t h e i n s t r u m e n t a l a n a l y t i c a l m e t h o d a n d t h e 
a p p l i c a t i o n o f m a t h e m a t i c s a n d s t a t i s t i c s i n a n a l y t i c a l c h e m i s t r y . 
The i n t r o d u c t i o n o f t h e c o m p u t e r was one o f t h e m a i n f a c t o r s 
i n i t i a t i n g a new a n a l y t i c a l s u b d i s c i p l i n e , c h e m o m e t r i e s , w h i c h h a s 
a s t r o n g m a t h e m a t i c a l c h a r a c t e r . 

I n m o s t a p p l i c a t i o n s c h e m o m e t r i c m e t h o d s a r e a p p l i e d t o 
a n a l y t i c a l d a t a i n a n o f f - l i n e m o d e ; t h a t i s , d a t a h a s a l r e a d y 
b e e n o b t a i n e d b y c o n v e n t i o n a l t e c h n i q u e s a n d i s t h e n a p p l i e d t o a 
p a r t i c u l a r c h e m o m e t r i c m e t h o d . E x a m p l e s o f t h i s u s e a r e i n 
c l u s t e r a n a l y s i s a n d i n p a t t e r n r e c o g n i t i o n . T h e y a r e a p p l i e d t o 
s p e c t r o s c o p i c , c h r o m a t o g r a p h i c , a n d o t h e r a n a l y t i c a l d a t a . 

0097-6156/85/0284-0101S06.00/0 
© 1985 American Chemical Society 
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102 TRACE RESIDUE ANALYSIS 

A more active kind of chemometries aims at the integration of 
s t a t i s t i c a l and mathematical techniques with the an a l y t i c a l 
procedure. The conventional a n a l y t i c a l process i s modified or a 
completely new process i s developed in studying reactions, 
transport processes, adsorption, absorption, etc. The ultimate aim 
is to obtain more and better information in an optimum way. 

Correlation Chromatography (CC) can be considered a typical 
example of an active or on-line chemometric technique. Impossible 
without computers, i t shows promising results in (ultra) trace 
analysis. This paper w i l l describe two directions that u t i l i z e 
correlation techniques: a semi-continuous kind of chromatography 
( _1 ) and an extension of the l i m i t of detection in trace analysis 
( 1_ ). Correlation Chromatography w i l l be shown to be a powerful 
method for application in (ultra) trace analysis. 

Principals of Correlation Chromatography 

C l a s s i c a l l y , the chromatogram i s the response of a chromatographic 
system that u t i l i z e s an impulse or single injection of a sample. 
Correlation chromatography, on the other hand, u t i l i z e s 
semi-continuous injection of sample over a period of time. An 
example at this point i s needed to describe this comparison more 
cl e a r l y . In normal chromatography an injection i s made at a given 
instant. The introduction of the sample i s a single, discreet 
action. The output of such an injection that has been carried 
through the separation column i s a chromatographic recorder trace 
which consists of a series of (hopefully) well defined "peaks", 
where each peak represents (hopefully) a single compound. Hence, 
a single force or "impulse" of injection produces a response of a 
single peak (for each compound) which could be called an "impulse 
response". It i s essentially single impulse chromatography. 

In contrast, correlation chromatography i s multiple impulse 
chromatography. It u t i l i z e s sample that i s discreetly added many 
times in a random way . Since any number and length of injections 
can be made in l i q u i d chromatography before the compound of 
interest may elute from the column, the response (the total 
signal) of such chromatography i s a massive group of fused peaks 
that looks l i k e a l o t of noise often with a greatly raised 
baseline. See Figure 1. To the naked eye i t i s impossible to 
visual i z e separated peaks. However, to the computer which knows 
the injection function, the output response has a l o t of sense. 
It can resolve a peak from noise and produce a "correlogram" which 
is very similar to a normal chromatogram. The longer the system 
is run, the larger the sought peaks w i l l be. In trace analysis 
the result i s the detection of trace compounds otherwise not 
attainable by impulse techniques. The cost of such work i s the 
larger amount of sample needed (in mL instead of microliter 
quantities) and a longer analysis time than from single impulse 
chroma tography. 
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7. SMIT Developments in Correlation Chromatography 103 

Of course, the impulse response of a system can be determined 
by measuring the response on an impulse-shaped input s i g n a l , but 
an a l t e r n a t i v e way i s to determine the cr o s s - c o r r e l a t i o n function 
of a suitable stochastic (random) input s i g n a l and the r e s u l t i n g 
output. Omitting the mathematical proof, which i s given i n ( 2_ ), 
we w i l l describe t h i s process by following the reasoning given i n 
( 3 ). 

Some basic d e f i n i t i o n s are necessary. The d e f i n i t i o n of a 
cro s s - c o r r e l a t i o n function (CCF) of two non-zero average power 
si g n a l s , x ( t ) and y ( t ) , i s : 

R (r) xy N—' lim 1/T 
T->oo 

-T/2 

T/2 

x ( t - r ) y ( t ) d t (1) 

The cr o s s - c o r r e l a t i o n function R (T) for two s i g n a l s , 
x(t) and y ( t ) , describes the genera? dependence (c o r r e l a t i o n ) 
of the amplitude of one sign a l to the other as a function of the 
time displacement T^. For example, x( t) can be the input signal 
and y(t) the r e s u l t i n g output sig n a l of a system. The c o r r e l a t i o n 
between the input and the output signal i s determined by the 
properties of the system. I f i n this system there e x i s t s only a 
pure delay, _r^, without a f f e c t i n g the sign a l (mathematically 
y( t ) = x ( t - j r ^ ), then of course the maximum c o r r e l a t i o n i s 
found a t _r = T. . 

The d e f i n i t i o n of R (T) i s given for non-zero average 
power s i g n a l s , i . e . , signals t h e o r e t i c a l l y not l i m i t e d i n time, 
l i k e noise and periodic s i g n a l s . Peaks and other time l i m i t e d 
signals are zero average power s i g n a l s . R (r) i s the average 
product of sign a l y ( t ) and a time r delayeS^version of signal 
x ( t ) . 

The autocorrelation function (ACF) of a non-zero average 
power s i g n a l x(t) i s defined by 

R (r) xx — lim 
T-

1/T 
• oo 
-T/2 / 

T/2 

x( t - r ) x ( t ) d t (2) 

R (T) i s the average product of x( t) and a time _r delayed 
versTon of x ( t ) . The autocorrelation function i s a basic function 
i n the char a c t e r i z a t i o n of a stochastic s i g n a l . Considering the 
ACF as a function of T of a r e l a t i v e l y f a s t f l u c t u a t i n g 
(stationary) stochastic signal with an average value equal to 
zero, one can observe a much faster decrease of the ACF compared 
with an i d e n t i c a l but slowly f l u c t u a t i n g stochastic s i g n a l . 
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104 TRACE RESIDUE ANALYSIS 

It i s impossible to predict the amplitude of a stochastic 
signal at a certain time in the future in contrast to a 
deterministic signal like a sine wave. Only a s t a t i s t i c a l 
description, for instance by d i s t r i b u t i o n functions and 
autocorrelation functions, can be given. Most kinds of noise have 
a stochastic character. 

An ACF i s always an even function, symmetrical with respect 
to rj=o. The fast decreasing ACF of a very fast fluctuating 
stochastic signal can be considered as an impulse. 

In correlation chromatography a special kind of a stochastic 
input signal i s used, a binary noise. In binary noise only two 
amplitude levels can occur, high or low (see Figure 1). Neverthe
less, i t is a stochastic signal because i t is unpredictable which 
of the two levels w i l l be present at a certain time in the future. 
On the average each of the two levels has a probability of 0.5. 
Generally, the binary noise i s generated a r t i f i c i a l l y by a 
generator controlled by an internal clock. The clock period Â t 
determines the minimum time that one of the two states w i l l e x i s t . 
During the determination of the ACF R (T) of a binary noise 
with amplitude levels of +1 and -1, i f the time s h i f t jr i s greater 
than the clock period At, then the average product of x(t) and 
x(t - T) , being R (_r), w i l l be zero; the probability of each 
of the products and -1 i s 0.5. However, i f T <At, then the ACF 
as a function of r i s l i n e a r l y decreasing from 1 (TJ=0) to 0 ( _̂=At 
or T = -At)• Hence, the ACF i s a triangle with a base width of two 
times the clock period. 

A special kind of random noise, pseudo random noise, has the 
special property of not being r e a l l y random. After a certain time 
i n t e r v a l , a sequence, the same pattern i s repeated. The most 
suitable random input function used in CC is the Pseudo Random 
Binary Sequence (PRBS). The PRBS i s a lo g i c a l function, that has 
the combined properties of a true binary random signal and those 
of a reproducible deterministic signal. The PRBS generator i s 
controlled by an internal clock; a PRBS i s considered with a 
sequence length N and a clock period At. It is very important to 
note that the estimation of the ACF, i f computed over an integral 
number of sequences, i s exactly equal to the ACF determined over 
an i n f i n i t e time. 

Figure 1 shows an example of a short PRBS (N = 15 clock 
periods) and the procedure to determine a point of the ACF. The 
product function (shaded area) i s integrated. 

Figure 2 shows a basic diagram of a correlation 
chromatograph. The input of the column is connected in turn with 
a sample stream and an eluent stream, controlled by a suitable 
PRBS input pattern. Cross-correlation of the PRBS and the 
resulting detector output gives the impulse response of the 
system, in this case the chromatogram. The following reasoning 
makes this plausible: 

Suppose we have an ideal chromatographic column, no 
dispersion, and a linear p a r t i t i o n isotherm. The res u l t i s only a 
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7. S M I T Developments in Correlation Chromatography 105 

Clock 

PRBS I 

PRBS II 

1 W/, 
7777 1 1 1 PI 

1 1 i 
Product I > 

Figure 1. Example of a PRBS, Determination of one point of 
R(r). 

SAMPLE SAMPLE 

Eluate Eluate 

DETECTOR COMPUTER DETECTOR COMPUTER 

PSEUDO RANDOM BINARY SEQUENCE 
(PRBS) 

Figure 2. Basic diagram of a correlation chromatograph. 
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106 TRACE RESIDUE ANALYSIS 

d e l a y f o r e v e r y i n p u t p a t t e r n . A c o n v e n t i o n a l l y p u l s e - s h a p e d 
i n j e c t i o n ( o n e c o m p o n e n t ) c a u s e s a d e l a y e d p u l s e a t t h e d e t e c t o r ; 
t h e d e l a y t i m e i s t R . O f c o u r s e t h e r e s u l t o f a P R B S i n p u t 
( o n e c o m p o n e n t ) i s a P R B S o u t p u t , t R s e c o n d s d e l a y e d . I n t h a t 
c a s e t h e c r o s s - c o r r e l a t i o n f u n c t i o n ( C C F ) o f i n p u t a n d o u t p u t i s 
i d e n t i c a l t o t h e A C F o f t h e P R B S , h o w e v e r , s e c o n d s s h i f t e d 
i n t i m e . The A C F i n t h i s c a s e i s a g a i n a t r i a n g l e , h o w e v e r n o t a t 
jr=0 b u t a t r = t R . I f t h e c l o c k p e r i o d i s s m a l l c o m p a r e d w i t h 
t h e d e l a y t i m e , t h i s t r i a n g l e c a n be c o n s i d e r e d a s a n i m p u l s e . 
H e n c e , t h e c o r r e l o g r a m i s i d e n t i c a l w i t h t h e c h r o m a t o g r a m . I n 
b o t h c a s e s t h e a m p l i t u d e i s p r o p o r t i o n a l t o t h e i n p u t 
c o n c e n t r a t i o n o f t h e c o m p o n e n t . 

A s a m p l e w i t h n c o m p o n e n t s , e a c h w i t h a c e r t a i n c o n c e n t r a t i o n 
a n d i t s own r e t e n t i o n t i m e , r e s u l t s i n 11 summed P R B S f u n c t i o n s a t 
t h e d e t e c t o r o u t p u t , e a c h w i t h a n a m p l i t u d e d e p e n d e n t o n t h e c o n 
c e n t r a t i o n . C r o s s - c o r r e l a t i o n g i v e s a g a i n a c o r r e l o g r a m s i m i l a r 
t o t h e c h r o m a t o g r a m . C o n s i d e r i n g a n o r m a l c h r o m a t o g r a m t o be made 
up f r o m la p o i n t s , e a c h r e p r e s e n t i n g a " c o m p o n e n t " w i t h a c e r t a i n 
a m p l i t u d e a n d r e t e n t i o n t i m e , l e a d s b y t h e same r e a s o n i n g t o t h e 
same c o n c l u s i o n , a c o r r e l o g r a m i s i d e n t i c a l t o t h e c h r o m a t o g r a m . 

The PRBS i s t o be p r e f e r r e d t o o t h e r r a n d o m i n p u t s w i t h 
a p p r o x i m a t e l y i m p u l s e - s h a p e d a u t o c o r r e l a t i o n f u n c t i o n s f o r t h e 
f o l l o w i n g r e a s o n s : 
1) I t i s a b i n a r y n o i s e w i t h o n l y two l e v e l s (+1 a n d - 1 o r 1 a n d 
0 , r e s p e c t i v e l y ) . The l e v e l s c a n be u s e d t o c o n t r o l s i m p l e o n / o f f 
v a l v e s . 
2 ) The f u n c t i o n c a n be e a s i l y g e n e r a t e d a n d r e p r o d u c e d . 
3 ) I t s s p e c i a l p r o p e r t i e s o f f e r t h e p o s s i b i l i t y o f r e d u c i n g t h e 
s o - c a l l e d c o r r e l a t i o n n o i s e , c a u s e d b y a l i m i t e d c o r r e l a t i o n t i m e . 
CC i s e s s e n t i a l l y s t a t i s t i c a l b y n a t u r e . The s y s t e m n o i s e 
( d e t e c t o r n o i s e ) i s n o t c o r r e l a t e d w i t h t h e i n p u t P R B S ; t h e n o i s e 
i n t h e c o r r e l o g r a m , r e s u l t i n g f r o m t h e d e t e c t o r n o i s e , i s 
c o n v e r g i n g t o z e r o w i t h i n c r e a s i n g c o r r e l a t i o n t i m e . 

S e t Up o f a C o r r e l a t i o n C h r o m a t o g r a p h 

A c o r r e l a t i o n c h r o m a t o g r a p h r e q u i r e s o n l y a m o d i f i c a t i o n o f t h e 
i n j e c t i o n s y s t e m o f a c o n v e n t i o n a l c h r o m a t o g r a p h . F i g u r e 3 s h o w s 
a d e s i g n f o r a c o r r e l a t i o n h i g h p r e s s u r e l i q u i d c h r o m a t o g r a p h y 
s y s t e m . I t i s s u i t a b l e f o r h i g h p r e s s u r e up t o 5 0 0 b a r a n d f o r 
u s e w i t h c o r r o s i v e s a m p l e s . A n e x t e n s i v e d e s c r i p t i o n i s g i v e n i n 
( 4̂  ) . T h i s c h r o m a t o g r a p h i s i n t e n d e d f o r u s e i n u l t r a t r a c e 
a n a l y s i s a n d r e s e a r c h i n C C . A p a r t f r o m t h e i n j e c t i o n s y s t e m , 
e s s e n t i a l e x t e n s i o n s o f a c h r o m a t o g r a p h i c s e t - u p t o a l l o w CC t h a t 
a r e r e q u i r e d a r e : 
a ) The p a t t e r n g e n e r a t o r w h i c h i s n e c e s s a r y f o r g e n e r a t i n g e i t h e r 
a s i n g l e p u l s e ( n o r m a l c h r o m a t o g r a p h y ) o r a P R B S a d a p t e d t o t h e 
s a m p l e ( C C ) . I t i s u s e d f o r s t i m u l a t i o n o f t h e c o l u m n v i a 
s w i t c h i n g o f v a l v e s a n d f o r c a l c u l a t i o n o f t h e C C F f r o m t h e 
d e t e c t o r o u t p u t a n d t h e p a t t e r n . 
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7. SMIT Developments in Correlation Chromatography 107 

b ) The d a t a s a m p l e r , w h i c h i s u s e d t o s a m p l e t h e f i l t e r e d 
e l e c t r i c d e t e c t o r s i g n a l a n d t o c o n v e r t i t t o a d i g i t a l v a l u e . 
c ) A n a r i t h m e t i c u n i t t o c a l c u l a t e t h e C C F . 
d ) A d i s p l a y f o r t h e r e s u l t s . 

Some e x t e n s i o n s a r e n o t e s s e n t i a l f o r C C , b u t g r e a t l y i m p r o v e 
i t s c a p a b i l i t i e s . I n t e r f a c e s t o a d a t a s t o r a g e d e v i c e a n d t o a 
h a r d c o p y u n i t a r e v a l u a b l e . Some f a c i l i t y f o r d a t a p r o c e s s i n g 
a f t e r w a r d s ( b a s e l i n e c o r r e c t i o n a n d p e a k a r e a d e t e r m i n a t i o n ) i s 
d e s i r a b l e • 

A m i c r o p r o c e s s o r i s i d e a l l y s u i t e d f o r C C . I n o u r l a b o r a t o r y 
a m i c r o p r o c e s s o r b a s e d i n s t r u m e n t , a c o r r e l a t o r , h a s b e e n 
d e v e l o p e d w h i c h m e e t s a l l t h e m e n t i o n e d r e q u i r e m e n t s f o r C C . 
D e t a i l s c a n be f o u n d i n ( J> ) . 

R e s u l t s i n T r a c e A n a l y s i s 

The f i r s t e x p e r i m e n t s d i r e c t e d t o t r a c e a n a l y s i s w e r e c a r r i e d o u t 
i n c o r r e l a t i o n g a s c h r o m a t o g r a p h y ( 2 ) . H o w e v e r , i n t h e r e c e n t 
y e a r s m u c h a t t e n t i o n was p a i d t o c o r r e l a t i o n H P L C , b e c a u s e t h e 
d e t e c t i o n i s g e n e r a l l y m o r e a p r o b l e m t h a n i n GC a n d b e c a u s e 
i n j e c t i o n i s i n h e r e n t l y e a s i e r . R e s u l t s w i t h a f i r s t e x p e r i m e n t a l 
s e t - u p a n d a n o f f - l i n e c o m p u t e r c a l c u l a t i o n o f t h e C C F w e r e v e r y 
p r o m i s i n g . 

T a b l e I . L i s t i n g o f S o l u t e s P r e s e n t i n t h e C h r o m a t o g r a m ( F i g . 4 ) . 

P e a k N o . S o l u t e C a p a c i t y C o n c e n t r a t i o n 
R a t i o (ppm) 

1 i m p u r i t i e s , THF - -
2 2 , 3 - d i c h l o r o p h e n o l 5 . 5 2 1 0 . 5 
3 2 , 6 - D C P 6 . 3 4 1 2 . 6 
4 3 , 4 - D C P 7 . 0 7 1 0 . 9 
5 2 , 5 - D C P 7 . 7 8 1 0 . 0 
6 2 , 3 , 4 - t r i c h l o r o p h e n o 1 8 . 5 3 1 0 . 1 
7 2 , 3 , 6 - T C P 9 . 7 0 1 1 . 8 
8 3 , 5 - D C P 1 0 . 5 2 9 . 9 
9 3 , 4 , 5 - T C P 1 1 . 9 4 1 0 . 4 

10 2 , 4 , 6 - T C P 1 2 . 7 6 1 0 . 0 
11 2 , 3 , 4 , 5 - t e t r a c h l o r o p h e n o l 1 5 . 5 2 1 0 . 1 
12 2 , 3 , 5 , 6 - T C P 1 7 . 2 1 1 0 . 3 
13 p e n t a c h l o r o p h e n o l 2 4 . 9 6 1 0 . 4 
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108 TRACE RESIDUE ANALYSIS 

A l o w e r i n g o f t h e d e t e c t i o n l i m i t b y a f a c t o r o f 100 was 
a c h i e v e d i n t h e a n a l y s i s o f p h e n o l a n d d i m e t h y l p h e n o l ( 6̂  ) • The 
e f f i c i e n c y o f CC c o m p a r e d w i t h w e l l k n o w n s i g n a l e n h a n c e m e n t 
m e t h o d s was d e m o n s t r a t e d i n t h e s e e x p e r i m e n t s . The t o t a l 
c o r r e l a t i o n t i m e , r e q u i r e d t o a c h i e v e a f a c t o r o f 100 l o w e r i n g o f 
t h e d e t e c t i o n l i m i t , was a b o u t two h o u r s . S i g n a l e n h a n c e m e n t 
( s u m m i n g o f a n u m b e r o f c h r o m a t o g r a m s ) w o u l d h a v e r e q u i r e d a b o u t 
1200 h o u r s o r 50 d a y s ( ! ) t o a c h i e v e t h e same r e s u l t . I n t h e 
s i g n a l e n h a n c e m e n t t e c h n i q u e t h e s i g n a l i n c r e a s e s p r o p o r t i o n a l l y 
t o t h e n u m b e r o f summed c h r o m a t o g r a m s . H o w e v e r , t h e n o i s e 
i n c r e a s e s o n l y b y t h e s q u a r e r o o t o f t h e n u m b e r o f s u m m a t i o n s . 

The m i c r o p r o c e s s o r - b a s e d c o r r e l a t o r h a s b e e n u s e d i n a 
c o r r e l a t i o n " s e p a r a t i o n " o f a more c o m p l e x m i x t u r e ( _7 ) . F i g u r e 
4 s h o w s a p l o t o f a c o n v e n t i o n a l c h r o m a t o g r a m r e p r e s e n t i n g t h e 
H P L C s e p a r a t i o n o f t w e l v e c h l o r i n a t e d p h e n o l s . The c o n c e n t r a t i o n 
o f e a c h c o m p o n e n t i s a b o u t 10 ppm o r 10 m g / L ( s e e T a b l e I ) . 

F i g u r e 5 r e p r e s e n t s a c o r r e l o g r a m o f t h i s a n a l y s i s o b t a i n e d 
w i t h t h e c o r r e l a t o r a n d a m o d i f i e d H P L C s y s t e m . The c o n c e n t r a t i o n 
o f e a c h c o m p o n e n t i s o n l y 0 . 2 p p m , a n e n h a n c e m e n t o f 5 0 . I n 
F i g u r e 6 t h e r e s p o n s e t r a c e l e a d i n g t o t h e c o r r e l o g r a m o f F i g u r e 5 
i s s h o w n . 

CC i s e s s e n t i a l l y a d i f f e r e n t i a l m e t h o d ; n e g a t i v e p e a k s 
c a u s e d b y c o m p o n e n t s i n t h e e l u e n t a n d p o s i t i v e p e a k s c a u s e d b y 
c o m p o n e n t s i n t h e s a m p l e c a n b o t h be p r e s e n t . A p a r t f r o m m i n o r 
d i f f e r e n c e s i n r e s o l u t i o n , c a u s e d b y a s l i g h t m o d i f i c a t i o n i n 
s e p a r a t i o n c o n d i t i o n s ( c o l u m n t e m p e r a t u r e ) , two e x t r a p e a k s a p p e a r 
i n t h e c o r r e l o g r a m c o m p a r e d w i t h t h e c h r o m a t o g r a m . The s m a l l p e a k 
a t 138 s e c o n d s i n t h e c o r r e l o g r a m i s p r e s u m a b l y a n i s o m e r . The 
l a r g e p e a k a t 35 s e c o n d s was p r o b a b l y a l a t e - e l u t i n g p e a k f r o m a 
p r e v i o u s i n j e c t i o n o r a p e a k t h a t was f o l d e d d u e t o i n c o r r e c t 
c o r r e l o g r a m d u r a t i o n t i m e . The p e r i o d i c i t y o f t h e PRBS c a u s e d a n 
o v e r l a p i n t h e c o r r e l o g r a m i f t h e l e n g t h o f t h e c h r o m a t o g r a m 
e x c e e d s t h e l e n g t h t o t h e c h o s e n P R B S . 

F i g u r e 7 s h o w s a n e n l a r g e d p a r t o f a c o m p l e x c o r r e l o g r a m , 
d i s p l a y e d a f t e r c o r r e l a t i o n b y t h e c o r r e l a t o r . The a r e a o f one o f 
t h e p e a k s i s s h o w n . 

The a n a l y t i c a l p e r f o r m a n c e o f CC i s d e m o n s t r a t e d b y e x t e n d i n g 
t h e c a l i b r a t i o n g r a p h o f m e a s u r e d p h e n o l w i t h d a t a f o u n d b y C C . 
See F i g u r e 8 . H P L C e q u i p m e n t u s i n g r e v e r s e d p h a s e s e p a r a t i o n w i t h 
f l u o r o m e t r i c d e t e c t i o n was u s e d . I n j e c t i o n f o r c o r r e l a t i o n H P L C 
was a c c o m p l i s h e d w i t h a n e w l y d e v e l o p e d d e v i c e ( 4̂  ) . The t o t a l 
r a n g e o f p h e n o l m e a s u r e d was f i v e d e c a d e s o f c o n c e n t r a t i o n : 0 . 0 1 -
100 j u g / L . The two h i g h e r c o n c e n t r a t i o n s ( 1 0 - 100 / A g / L ) w e r e 
d e t e r m i n e d s o l e l y b y c o n v e n t i o n a l m e t h o d s . The two l o w e r 
c o n c e n t r a t i o n s ( 0 . 0 1 - 0 . 1 / x g / L ) w e r e d e t e r m i n e d b y c o r r e l a t i o n 
H P L C w i t h 16 a n d 3 s e q u e n c e s c o r r e l a t i o n t i m e , r e s p e c t i v e l y . 
M e a s u r e m e n t s a t t h e 1 / x g / L l e v e l w e r e c a r r i e d o u t b o t h b y 
c o n v e n t i o n a l a n d b y c o r r e l a t i o n H P L C ( 1 s e q u e n c e ) . The b a r s 
i n d i c a t e d o n t h e c a l i b r a t i o n g r a p h r e p r e s e n t t h e p e a k a r e a +3 

_ a T ( a r b i t r a r y u n i t s ) , w h e r e a i s t h e s t a n d a r d d e v i a t i o n 
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SMIT Developments in Correlation Chromatography 

SAMPLE LOOP 

Figure 3. Set-up of a correlation HPLC system. The 
constant water flow i s controlled by a PRBS pattern which 
directs the flow to either the sample or the eluent 
reservoir driving the appropriate plunger forward. A 6-way 
rotary valve i s placed at the outlet of the eluent reservoir 
to allow single injection experiments. 

Chromatogram 10 PPM 

25.00 50-00 75.00 100.00 125.00 150.00 175.00 200.00 225.00 250.00 275.00 300.00 

Time ( x 10 1 ) 

Figure 4. Separation of twelve di f f e r e n t chlorinated 
phenols by conventional HPLC. The solutes are l i s t e d in 
Table I. 
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TRACE RESIDUE ANALYSIS 

Correlogram: Cl-Phenols 
A l l Concentr. 200 PPB 

30.00 60-00 90.00 120.00 150.00 180.00 210.00 240.00 270.00 300.00 330.00 360.00 

Time ( x 10 1) 
Figure 5. Correlogram corresponding to Figure 4 with 
s l i g h t l y d i f f e r e n t separation conditions. The concentration 
of each component is 0.2 ppm. 
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SMIT Developments in Correlation Chromatography 1 

Area = 11.44141 mV.s 
Sigma-I - 1.46756 mV.s 

Figure 8. Calibration graph of phenol with fluorometric 
detection. 
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112 TRACE RESIDUE ANALYSIS 

of the integrated signal plus noise ( J3 ). The inner bars at the 
1 g/L level represent the correlation results and the outer bars 
the single injection results. The detection limits of the single 
injection experiments and of the correlation procedure with 10 
ng/L concentration, both defined as 3 <r^9 were estimated to be 
about 500 ng/L and 3 ng/L (or 3 ppt, parts per t r i l l i o n ) , 
respectively (Figure 9). 

Figure 9. Correlogram of a 10 ng/L phenol sample. 
Detection l i m i t for 80 min correlation time i s approximately 
3 ppt (3.10 ng/L). 
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7. SMIT Developments in Correlation Chromatography 113 

Discussion and Conclusions 

The advantages of CC i n u l t r a trace analysis are shown to be 
unmistakable. The quantitative r e l i a b i l i t y of the method was 
demonstrated by the extension of a c a l i b r a t i o n graph for phenol to 
two decades of concentration more when compared with conventional 
chromatography. A considerable improvement of the signal-to-noise 
r a t i o can be achieved i n a r e l a t i v e l y short time. The method 
off e r s e x c e l l e n t prospects for u l t r a trace analysis i n cases where 
preconcentration of the solute f a i l s . 

More research has to be done. One area i s the influence of 
no n - l i n e a r i t y which causes an extra baseline noise i n the 
correlogram. In j e c t i o n systems for other kinds of chromatography, 
i n p a r t i c u l a r GC, have to be developed. The a b i l i t y to detect 
very small differences between the solute concentrations i n the 
background and the sample has to be investigated. 
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8 
Calibration-Curve-Based Analysis 
Use of Multiple-Curve and Weighted Least-Squares Procedures 
with Confidence Band Statistics 

DOUGLAS G. MITCHELL 

Center for Laboratories and Research, New York State Department of Health, Albany, 
NY 12201 

Two procedures for improving precision in cal ibra
tion curve-based-analysis are described. A multiple 
curve procedure is used to compensate for poor 
mathematical models. A weighted least squares 
procedure is used to compensate for non-constant 
variance. Confidence band s ta t i s t ics are used to 
choose between alternative calibration strategies 
and to measure precision and dynamic range. 

This paper describes the use of s t a t i s t i c a l techniques to improve 
pr e c i s i o n i n routine chemical analysis at a modest extra cost and 
to measure the p r e c i s i o n of such analyses. 
Mote the key words i n t h i s aim: 

Pr e c i s i o n , not accuracy. Accuracy i s mainly a 
chemical problem, whereas p r e c i s i o n i s a chemical, instrumental 
and s t a t i s t i c a l problem. 

Routine chemical analysis. This implies analysis of 
many samples, and use of c a l i b r a t i o n curves i s an economic 
necessity. In general, the two-standard method, with standards 
bracketing each sample analyzed, i s economical for the analysis 
of up to about 10 samples. Conventional least squares curve of 
best f i t procedures are economical for analysis of 10 to 500 
samples. The procedures described here are cost e f f e c t i v e for 
the analysis of 500 samples or more. 

Cost. There i s always a trade-off of cost versus data 
q u a l i t y . Data q u a l i t y can be improved by further method develop
ment, more extensive c a l i b r a t i o n , r e p l i c a t e analysis or better 
s t a t i s t i c s . 

Measurement of p r e c i s i o n . Measurement of data q u a l i t y 
i s valuable for both the analyst and the data user. Least-
squares curve-of-best-fit s t a t i s t i c a l programs usually provide 
some information on pr e c i s i o n ( c o r r e l a t i o n c o e f f i c i e n t , standard 
error of estimate). However, these are not s u f f i c i e n t l y quanti
t a t i v e and often overstate the qu a l i t y parameters of the data. 

To provide optimum data i n routine chemical analysis, the 
a n a l y t i c a l method must meet four c r i t e r i a . The f i r s t two are 

0097-6156/85/0284-0115S06.00/0 
© 1985 American Chemical Society 
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116 TRACE RESIDUE ANALYSIS 

fundamental and determine the upper limit of method performance. 
The last two concern calibration. 

1. The method must be precise. (Without precision we 
cannot get accuracy, unless we carry out many replicate 
analyses.) 

2. The method must be accurate, or at least free from 
unpredictable bias. 

3. The calibration process must not excessively degrade 
precision. (Use of a calibration curve wil l usually result in 
less precise analyses, compared with bracketing each sample 
measurement with standard measurements.) 

4. The calibration curve must be stable, i .e . free from 
dri f t . 

This paper is concerned with the effects of the 
calibration process on data quality. 

Risks to Data Quality in the Calibration Process 

Over a limited dynamic range, say 1 to 10, use of least squares 
procedures has l i t t l e adverse effect on data quality. With 
calibration over wide dynamic ranges and with non linear curves, 
precision is lost because: 

The mathematical model may not closely f i t the data. For 
example, Figure 1 shows calibration data for the determination of 
iron in water by atomic absorption spectrometry (AAS). At low 
concentrations the curve is first-order, at high concentrations 
it is approximately second-order. Neither model adequately f its 
the whole range. Figure 2 shows the effects of blindly fitt ing 
inappropriate mathematical models to such data. In this case, a 
manually plotted curve would be better than either a f i r s t - or 
second-order model. 

Calibration curves yield the best precision at the mean 
concentration of the standards. For example, a curve based on 
standard with concentrations of 1, 4 and 10 yields best precision 
at 5 (assuming constant variance). To achieve maximum precision 
the standards should be selected so that their mean concentration 
is equal to the most important sample concentration, such as an 
action level. The curve wi l l yield increasingly poor precision 
with increasing distance from this mean. 

The least-squares curve-of-best-fit procedure implicitly 
assumes the same variance (standard deviation) at a l l concentra
tions. This assumption is rarely correct. Figure 3a shows 
hypothetical replicate standard analysis data with constant 
variance. This pattern is almost never seen in routine chemical 
analyses. Figure 3b shows a much more realistic pattern in which 
the variance increases with concentration. 

Proposed Solutions to Calibration Problems 

There are several approaches to minimizing the loss of precision 
inherent in calibration-curve-based analysis. We have chosen a 
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8. MITCHELL Calibration-Curve-Based Analysis 117 

CONCENTRATION (^g/ml) 
Fig. 1. 
Calibration data for determination of iron in water by AAS 
(Reprinted with permission from D. G. Mitchell and J . S. Garden, 
Talanta, 1982, 29, 921-929.) 

Iron Concentration 

Fig. 2. 
Inappropriate use of first-and second-order least 
squares-curves-of- best-fit procedures with part of the data 
shown in Figure 1. 
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118 TRACE RESIDUE ANALYSIS 

F i g . 3. 
H y p o t h e t i c a l c a l i b r a t i o n d a t a s h o w i n g r e p l i c a t e s t a n d a r d a n a l y s e s 
w i t h ( a ) c o n s t a n t a n d ( b ) n o n c o n s t a n t v a r i a n c e . 
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8. MITCHELL Calibration-Curve-Based Analysis 119 

hybrid calibration-curve, two-standard method for calibration 
over wide dynamic ranges and a weighted least-squares procedure 
to compensate for nonconstant variance. Commonly used measures 
of precision such as correlation coefficients, standard errors of 
estimate and relative standard deviations (RSD) cannot reliably 
evaluate alternative calibration strategies. This is beacause 
they do not measure precision in terms of predicted sample con
centration. For example, a correlation coefficient (r) of 0.98 
is better than a value of 0.97 providing the same standards are 
used. If different standards are used, the high r value curve 
wil l not necessarily yield best precision for sample analysis. 
Before proceeding further, it is necessary to choose appropriate 
statistical techniques. 

Confidence Band Statistics. The confidence-band statistical 
approach is described in texts by Natrella (1) and Miller 
2) and in three papers from our laboratory (3-5). A computer 
program, REGRES, (See Appendix) was used to carry out a l l the 
computations described in this paper. 

The confidence band approach is illustrated in Figure 4. 
An appropriate mathematical model is chosen. This is usually a 
f irst order (signal = b 0 + b x x concentration) or second order 
(signal = b 0 + b± x concentration + b 2 x concentration2) 
linear equation. A calibration curve is then calculated using a 
least-squares curve-of-best f i t procedure (6). Next a 
confidence band is calculated around the curve using the regres
sion band equation from Table I. This band encloses the curve 
with a, say, 90% level of probability. A confidence band is then 
calculated around the signal using the appropriate signal band 
equation (Table I). The two bands are combined as shown in 
Figure 4 to yield a confidence band around the predicted concen
tration. The resulting band around the predicted concentration 
gives a conservative estimate of the precision of the analysis, 
including the effects of error in both sample and curve. 

There is a debate among statisticians concerning the best 
procedures for this application, and our approach may be too con
servative. To some extent a conservative bias is probably an 
advantage, because it could approximately compensate for (uncal-
culable) errors due to minor inaccuracies inherent in many 
methods. Even i f it is too conservative, the bands wil l be self-
consistent and should provide accurate estimates of relative 
precision. 
Improved mathematical models. First or second order linear 
equations adequately f i t much calibration data. If neither model 
is appropriate, the following semi-empirical multiple curve 
procedure may be used. 

Standards covering the proposed dynamic range are 
analyzed, and the resulting calibration data entered into program 
REGRES. Each sample is analyzed, and REGRES chooses the combina
tion of contiguous standards enclosing the sample which yields 
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120 TRACE RESIDUE ANALYSIS 

X, x 2 x 3
 0 x 4 x 5 

CONCENTRATION, X 

Fig. 4. 
Calibration curve with confidence bands around the curve, sample 
signal, and predicted concentration. (Reproduced with permission 
from D. G. Mitchell, W. N. Mil l s , J . S. Garden, and M. Zdeb, 
Anal. Chem, 1977, 49, 1655-1660, copyright 1977, American 
Chemical Society) 
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the narrowest band around the predicted concentration. Figure 5 
shows t y p i c a l curves selected by t h i s procedure. At low concen
t r a t i o n s a f i r s t - o r d e r equation based on, say, the three lowest 
standards i s chosen. At high concentrations a second-order 
equation y i e l d s the narrowest band. Note that t h i s procedure 
often does not use a l l available data, an omission which seeirs 
i n t u i t i v e l y incorrect. The procedure w i l l improve p r e c i s i o n when 
the benefits from better mathematical modeling exceed the losses 
from not using some data. In general, the multiple-curve proce
dure produces maximum benefits at the low-concentration end of a 
long, nonlinear curve. For example, in t y p i c a l data for the 
determination of fenvalerate by gas chromatography (Table I I ) , use 
of the multiple-curve procedure improved the p r e c i s i o n of the 
analysis by a factor of two at the 1 meg l e v e l , and a factor of 
three at the 5 meg l e v e l . 
Correction for nonconstant variance. To correct for noncon-
stant variance, i t i s necessary to weight standard measurements 
according to t h e i r l o c a l variance, S 2. For each standard con
centration the variance i s determined by r e p e t i t i v e analysis at 
that l e v e l , and a weighting f a c t o r , w = 1/s 2, i s calculated. 
These factors are used i n the equations given i n Table I . The 
computation requires only that the variance r a t i o s be 
accurately known. The absolute p r e c i s i o n of the method may 
change from day to day without a f f e c t i n g the v a l i d i t y of ei t h e r 
the least-squares curve-of-best f i t procedure or the confidence 
band c a l c u l a t i o n s . ( I t i s not p r a c t i c a l to reg u l a r l y monitor 
l o c a l variances, and errors may develop i n variance r a t i o s . 
Eowever, the error due to incorrect r a t i o s w i l l almost always be 
much less than the error due to assuming constant variance. Even 
guessed values of, say, S 2 a concentration are l i k e l y to y i e l d 
more precise data.) 

An unweighted least squares procedure i s often adversely 
affected by high concentration standards, with high (absolute) 
variances. These may cause large errors i n the slope of f i r s t 
order equations. The l i n e i s 'rotated', causing large 
r e l a t i v e errors at low concentrations. The weighting proce-
procedure deemphasiz.es these points, thus reducing t h i s e f f e c t . 
Figure 6 shows data for the determination of lead i n blood by 
Delves cup AAS. The f i r s t - o r d e r curve i s known to pass through 
zero. The weighted least-squares l i n e i s close, with an 4 
intercept of 1.5, but the unweighted l i n e has been ''rotated'' 
by a single low value (not an o u t l i e r ) at 65 ug/dL, giving an 
incorrect intercept of 3.3. A sample y i e l d i n g a signal of 5.3 
has a calculated lead concentration of 10 meg Pb/dl using the 
weighted least squares l i n e and 6 mcg/dl using the unweighted 
l i n e - a 40% error. S i m i l a r l y , figure 7 shows part of the 
weighted and unweighted least-squares curves for symposium 
Dataset B. Standards over the range 0.05 to 20 r i g fenvalerate 
were analyzed, and the figure shows a range of only 0-1. The 
variance at each amount l e v e l was known, so both weighted and 
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8. MITCHELL Calibration-Curve-Based Analysis 123 

Concentration 
F i g . 5. 
Use of multiple-curve procedure. Subsets of c a l i b r a t i o n data, 
each comprising several standards bracketing the samples, are 
used to calculate predicted concentrations for high-and 
low-concentration samples. 

Concentration (pig PB/dl) 
F i g . 6. 
Determination of lead i n blood by Delves-cup AAS. Both weighted 
and unweighted curves of best f i t are shown. 
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Table I I . Use of m u l t i p l e curve procedure to improve p r e c i s i o n 
of f e n v a l e r a t e a n a l y s i s by gas chromatography 

Multiple-Wave C a l i b r a t i o n 
F e n v a l e r a t e Amount Singl e - C u r v e C a l i b r a t i o n Range 

(meg) C a l i b r a t i o n RCB (%) Low High RCB% 

0.05 40 0.05 1.00 24 

0.25 33 0.05 1.00 20 

1.00 33 0.05 5.00 17 

5.00 26 1.00 20.00 7 

20.00 20 1.00 20.00 7 

Note: a = 0.05; Z, / 0 = 1.96 l-a/2 
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8. MITCHELL Calibration-Curve-Based Analysis 125 

F i g . 7. 
Determination of fenvalerate by gas chromatography with DATASET B 
showing weighted and unweighted second-order curves. 
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126 TRACE RESIDUE ANALYSIS 

unweighted curves could be calculated. These data are very 
precise, with f i v e r e p l i c a t e measurements at 20 ng fenvalerate 
having a range of + 2.6%. Use of the unweighted procedure 
caused s i g n i f i c a n t errors only at amount l e v e l s below 1 ng 
fenvalerate. 

Improved Measurement of P r e c i s i o n 

C a l i b r a t i o n curve q u a l i t y . C a l i b r a t i o n curve q u a l i t y i s 
usually evaluated by s t a t i s t i c a l parameters, such as the c o r r e l a 
t i o n c o e f f i c i e n t and standard error of estimate, and by empirical 
indexes, such as the length of the l i n e a r range. Using c o n f i 
dence band s t a t i s t i c s , curve q u a l i t y can be better described i n 
terms of confidence band widths at several key concentrations. 
Other semi-quantitative indexes become redundant. A l t e r n a t i v e l y , 
the e f f e c t s of curve q u a l i t y can be incorporated into statements 
of sample analysis data q u a l i t y . 
Sample analysis data q u a l i t y . P r e c i s i o n of sample analysis 
i s almost always measured by determining the RSD at two or more 
concentrations without using a c a l i b r a t i o n curve. Such data do 
not include the e f f e c t s of the c a l i b r a t i o n process on p r e c i s i o n , 
flluch better information i s given by the r e l a t i v e confidence 
bandwidth (RCB) defined as: 

RCB(%) = ^ P P e r band - lower band) x 100 
2 x Predicted Concentration 

For example, Figure 8 shows both RSD and RCB data for determina
t i o n of chloride and lead i n water. In Figure 8a, the l e a s t -
squares curve of best f i t c l o s e l y f i t s the lead standard data, 
and the c a l i b r a t i o n process has l i t t l e adverse ef f e c t on 
pre c i s i o n . RSD's and RCB's are almost equal. On the other hand, 
chloride standard data i n Figure 8b does not c l o s e l y f i t the 
mathematical model, and the RSD data overstates the pr e c i s i o n of 
the analysis by a factor of about two. 
Minimum reportable concentration. The lower concentration 
l i m i t for a method i s u s u a l l y measured by determining the 
detection l i m i t . This i s b a s i c a l l y an instrument signal to noise 
r a t i o , and i t does not include c a l i b r a t i o n e f f e c t s . At low 
concentrations the c a l i b r a t i o n process often has a major adverse 
eff e c t on p r e c i s i o n . Detection l i m i t s are useful for comparing 
the inherent s e n s i t i v i t y of methods, but they are not r e a l i s t i c 
indexes of measurable concentrations i n routine analysis. 

We suggest using a new parameter, the minimum reportable 
concentration, defined as the concentration whose confidence band 
ju s t includes zero (5.). This parameter i s obtained by 
reducing the value of signal Yo, figure 4, u n t i l the band around 
predicted concentration, Xo, ju s t touches zero. For example, for 
the determination of iron i n water by AAS, (data given in Table 
I I I ) the detection l i m i t , defined as the concentration at which the 
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Fig. 8. 
Comparison of RCB (-) and RSD ( ) for determination of (a) 
chloride and (b) lead in water. (Reprinted with permission from 
D. G. Mitchell and J . S. Garden, Talanta 1982, 29, 921-929, 
copyright 1982, Pergamon Press Ltd.) 
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128 TRACE RESIDUE ANALYSIS 

Table I I I . Determination of Maximum C o n c e n t r a t i o n of Iron i n Water 
by AAS 

Standard 
(vig/ml) 

Absorbance 
at nm 

Single- C u r v e 
C a l i b r a t i o n : 
RCB (%)-

M u l t i p l e - C u r v e 
C a l i b r a t i o n 

C a l i b r a t i o n 
range (pg/ml) 
Low High RCB (%) 

0.05 0. 004 40 0 .05 1.5 33 
0.10 0. 008 26 0 .05 1.5 19 
0.25 0. 022 13 0 .05 1.5 6 
0.50 0. 045 9 0 .1 1.5 5 
1.00 0. 093 8 0 .1 1.5 4 
1.5 0. 142 7 0 .1 20.0 6 
2.5 0. 222 7 0 .1 20.0 6 
5.0 0. 430 5 0 .1 20.0 4 

10.0 0. 750 6 0 .1 20.0 5 
15.0 0. 961 11 0 .1 20.0 8 
18.0 1. 054 60 15 .0 40.0 11 
20.0 1. 086 60 15 .0 40.0 12 
22.0 1. 145 60 15 .0 40.0 16 
25.0 1. 191 60 15 .0 40.0 25 
40.0 1. 268 60 25 .0 40.0 38 
50.0 1. 300 60 0 .05 100.0 60 
75.0 1. 360 60 40 .0 100.0 60 

100.0 1. 405 60 40 .0 100.0 60 

Note: a = 0.05; Z, / 0 = 1.96 l-a/2 
—A weighted l e a s t - s q u a r e s technique was used: c a l i b r a t i o n range 
0.05-18 ug/ml. 

Source: Reproduced with p e r m i s s i o n from Ref. 5. 
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8. MITCHELL Calibration-Curve-Based Analysis 129 

RSD i s 50%, i s 0.015 ug/ml. The minimum reportable concentration 
i s a factor of 2 higher when the method i s c a l i b r a t e d over a 
narrow, low concentration range (0.05 to 0.1 ug/ml). I t i s a 
factor of 20 higher when the method i s (inappropriately) 
cali b r a t e d over a dynamic range of 100 (0.05 to 5 ug/ml). 
Maximum reportable concentration. The upper l i m i t of 
measurement for a method i s usually defined as the concentration 
at which the curve shows a c e r t a i n deviation from l i n e a r i t y . 
This i s a v a l i d empirical c r i t e r i o n , since s e n s i t i v i t y and hence 
pr e c i s i o n decreases as the curve f l a t t e n s . However, l i n e a r i t y 
does not d i r e c t l y measure the performance parameter of i n t e r e s t : 
p r e c i s i o n . In practice an analyst would accept curves at high 
concentrations, providing the p r e c i s i o n i s s t i l l adequate and 
providing the method does not have accuracy problems at high 
concentrations e.g., because of l i g h t scattering i n absorption 
methods. 

Confidence bands are d i r e c t p r e c i s i o n data, and the 
maximum reportable concentration can be defined as the maximum 
concentration at which the method y i e l d s adequate p r e c i s i o n 
(5.) (excluding measurements near the minimum reportable 
concentration, where poor p r e c i s i o n i s unavoidable). Table I I I 
shows RCB for the determination of i r o n i n water by AAS. The 
analyst may consider a RCB of say, 15% to be adequate. The 
maximum reportable concentration would be 15 ug/ml from a s i n g l e , 
weighted least-squares curve, and 20 ug/ml by the multiple-curve 
method. Samples containing > 20 ug/ml should be d i l u t e d to 1-10 
ug/ml and analyzed using standards containing 0.05 - 15 pg/roL. 
(Mote that i t i s always better to include a standard above the 
maximum desired concentration. The p r e c i s i o n of t h i s standard 
measurement w i l l be poor, but poor data at t h i s l e v e l are better 
than none.) 
Implications For Method Development. The e f f e c t s of the 
c a l i b r a t i o n process on p r e c i s i o n suggest the need for an 
additi o n a l step i n the development of an a n a l y t i c a l method. A 
suggested flow chart i s shown i n Figure 9. The analyst should 
f i r s t develop a method of adequate accuracy and p r e c i s i o n without 
using c a l i b r a t i o n curves. The c a l i b r a t i o n step i s then added, 
and the p r e c i s i o n i s rechecked. I f p r e c i s i o n has been 
excessively degraded, the analyst can choose among al t e r n a t i v e 
c a l i b r a t i o n s t r a t e g i e s , such as use of more standard measurements 
and use of the multiple-curve procedure. 

Conclusion 

I have described a reasonably complete set of mathematical 
techniques for improving the p r e c i s i o n of calibration-curve-based 
analyses and measuring t h e i r p r e c i s i o n . Each technique may not 
be the optimum solution to each problem, but the o v e r a l l 
philosophy should be correct. We should develop s t a t i s t i c a l 
techniques to measure p r e c i s i o n which are self-consistent and 
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S E L E C T S A M P L E P R E P A R A T I O N 

A N D M E A S U R E M E N T T E C H N I Q U E S 

D E V E L O P F O R R O U T I N E A N A L Y S I S 

Y E S Y E S 

Y E S 

M E T H O D S A T I S F A C T O R Y F O R R O U T I N E 
A N A L Y S I S 

Method development procedure for calibration-curve-based 
analysis. (Reproduced with permission from D. G. Mitchell 
S. Garden, Talanta, 1982, 29, 921-929, copyright 1982, 
Pergamon Press Ltd.) 
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8. MITCHELL Calibration-Curve-Based Analysis 131 

which account f o r a l l the factors a f f e c t i n g p r e c i s i o n . We should 
use them to choose optimum c a l i b r a t i o n strategies and to measure 
the precision of the r e s u l t i n g data. 

The computer program REGRES was wr i t t e n by John S. Gorden, 
New York State Department of Health. I t can be obtained by 
sending a check f o r f 3 0 . 0 0 , made out to Health Research Inc., and 
a 9-track magnetic tape to John S. Gorden, New York State 
Department of Health, CSMDP, Concourse Level, Empire State Plaza, 
Albany, New York 12237. 
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9 
The Linear Calibration Graph and Its Confidence 
Bands from Regression on Transformed Data 

DAVID A. KURTZ1, JAMES L. ROSENBERGER2, and GWEN J. TAMAYO2 

1Pesticide Research Laboratory, Department of Entomology, The Pennsylvania State 
University, University Park, PA 16802 

2Department of Statistics, The Pennsylvania State University, University Park, PA 16802 

Linear calibration graphs were constructed from 
chromatographic response values by means of least 
squares statistical regression techniques to 
calculate amount estimates. The amount interval 
estimates reflect both the uncertainties of 
measuring the response values and the uncertainty of 
the calibration graph. The following steps were 
followed: transformation of response variables to 
constant variance across the graph using a family of 
power transformations approach, transformation of 
the amount variable with similar transformations 
towards l inear i ty , calculation of the regression 
coefficients by sums of squares, and solving the 
regression equation for unknowns. The total range 
of the amount interval estimation was found by 
construction of the response confidence interval and 
the confidence band around the calibration graph. 
Estimated amounts and amount intervals were 
calculated from chromatographic analysis of 
pesticide standards data at 95% probabili t ies with 
an overall α=0.05. Data were presented that show 
large errors at the l imi t of detection using 
non-transformed or improperly transformed data. 

The c a l i b r a t i o n p r o b l e m i n c h r o m a t o g r a p h y a n d s p e c t r o s c o p y h a s 
b e e n r e s o l v e d o v e r t h e y e a r s w i t h v a r y i n g s u c c e s s b y a w i d e 
v a r i e t y o f m e t h o d s . C a l i b r a t i o n g r a p h s h a v e b e e n d r a w n b y h a n d , 
b y i n s t r u m e n t s , a n d b y c o m m o n l y u s e d s t a t i s t i c a l m e t h o d s . E a c h 
m e t h o d c a n be q u i t e a c c u r a t e when p r o p e r l y u s e d . H o w e v e r , o n l y a 
f e w p a p e r s , f o r e x a m p l e ( 1 , 2 , 1 5 , 1 6 , 2 6 ) , show t h e s o p h i s t i c a t e d 
u s e o f a c h e m o m e t r i c m e t h o d t h a t c o n t a i n s h i g h p r e c i s i o n : 
r e g r e s s i o n w i t h t o t a l a s s e s s m e n t o f e r r o r . 

D i f f i c u l t i e s i n b o t h t h e c h e m i c a l a n d s t a t i s t i c a l a s p e c t s o f 
t h e p r o b l e m h a v e b e e n f o u n d t o be e n o r m o u s i n u t i l i z i n g s u c h a 

0097-6156/85/0284-0133S09.50/0 
© 1985 American Chemical Society 
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134 TRACE RESIDUE ANALYSIS 

calibration method. Chromatographic detection is accomplished by 
flame ionization as well as by many species specific detectors, 
such as the electron capture and the flame photometric detectors. 
The flame detector is non-specific to the chemical species found, 
is mass sensitive since the total sample is burned, and has a 
linear range of some 7 powers of ten ( 3 ). The electron capture 
detector is concentration dependent. It has been linearized 
through geometric design and electronic configuration to a range 
approaching 3 powers of ten ( 3 ). The flame photometric 
detector, similar in action with the flame ionization detector, 
has been found to be linear to 4 powers of ten in the phosphorus 
mode ( J3 ). Other known effects on the calibration have included 
contamination of the detector and day-to-day variabi l i ty . 
Fulf i l l ing the statist ical protocol also requires careful study. 
Aspects in this area include model f i t t ing, preparing constant 
variance data across the graph, diagnostic tests of closeness of 
f i t and constant variance achievement, and the construction of 
confidence limits. 

There are a number of ways to model calibration data by 
regression. Most researchers have attempted to describe data with 
a linear function. Others ( 4,5 ) have chosen a higher order or a 
polynomial method. One report ( 6 ) compared the error in the 
interpolation using linear segments over a curved region verses 
using a curvilinear regression. S t i l l others ( 7,8 ) chose 
empirical or spline functions. Mixed model descriptions have also 
been used ( 4,7 ). 

Ordinary least squares regression requires constant variance 
across the range of data. This has typically not been satisfied 
with chromatographic data ( 4,9,10 ). Some have adjusted data to 
constant variance by a weighted least squares method ( 4 ). The 
other general adjustment method has been by transformation of 
data. The log-log transformation is commonly used ( 9,10 ). One 
author compares the robustness of nonweighted, weighted linear, 
and maximum likelihood estimation methods ( 11 ). Another has 
constructed calibration graphs and confidence limits under the 
condition of nonuniform variance ( 12 ). On the other hand a 
completely different approach for the processing of chromatogra
phic data has been suggested ( 13 ) which involves the use of a 
mean slope method. 

The need for reporting accuracy and error in the form of 
confidence limits when reporting analytical results has already 
been well outlined ( _14 ). The confidence interval requires 
information about the number and distribution of calibration 
measurements, the location of the sample and the number of sample 
replicates. Agterdenbos has simplified the calculation by 
assuming homogeneity of variances and assuming that the variance 
of the sample and the calibration standards are the same ( ). 
Schwartz has calculated the approximate confidence limits of 
linear graphs without elaborate digital computation ( JJ3 ). 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 135 

We wil l describe an accurate statist ical method that includes 
a fu l l assessment of error in the overall calibration process, 
that is , (1) the confidence interval around the graph, (2) an 
error band around unknown responses, and finally (3) the estimated 
amount intervals. To properly use the method, data wil l be ad
justed by using general data transformations to achieve constant 
variance and linearity. It utilizes a six-step process to 
calculate amounts or concentration values of unknown samples and 
their estimated intervals from chromatographic response values 
using calibration graphs that are constructed by regression. 

Laboratory Methods and Equipment 

Preparation of Standard Solutions. The standards used in the 
preparation of the solutions for this work were obtained from the 
Health Effects Laboratory, U. S. Environmental Protection Agency, 
Research Triangle Park, NC. Dilutions were obtained from 
concentrated solutions using wiretrol measuring capillaries 
(Drummmond Scientific Co., Bromall, PA). The fenvalerate and 
chlorothalonil data sets were prepared with a statist ical ly 
equivalent format: Each of the standards at each concentration 
level had the same number of dilution steps and should therefore 
contain the same variance of dilution. In this case the i n i t i a l 
dilution was used to prepare two working standards, 1 and 2. Each 
was diluted once to 1.1 and 2.1. Each of these was used to 
prepare three standards for chromatographic injection, 1.11, 1.12, 
1.13 and 2.11, 2.12, and 2.13. 

The pesticides included in this study were fenvalerate, 
chlordecone (kepone), chlorothaloni1, and chlorpyrifos. Fenvaler
ate is a synthetic pyrethroid insecticide used, for example, for 
mites on chickens. Its chemical name is cyano(3-phenoxyphenyl)-
methyl 4-chloro-alpha-(l-methylethyl)benzeneacetate. Chlordecone 
is an insecticide, no longer used, and has a chemical name 
decachloro-octahydro-l,3,4-metheno-2H-cyclobuta(cd)=pentalen-2-one. 
Chlorothalonil is fungicide used on tomatoes whose chemical name 
is 2,4,5,6-tetrachloroisophthalonitrile. Chlorpyrifos is an 
insecticide with a chemical name 0,0-diethyl 0-(3,5,6-trichloro-
2-pyridyl)phosphorothioate. Chlorpyrifos is the U. S. Food and 
Drug Administration chromatographic reference standard since 
numerous specific detectors (electron capture, flame photometric 
in both sulfur and phosphorus modes, a lkal i flame, nitrogen 
phosphorus, and Hall detectors) are sensitive to i t . 

Each of the Datasets A-F were also of fenvalerate and were 
obtained from an extensive study of fenvalerate residues in 
chickens and eggs. They show how much variabil ity in data quality 
can be obtained in practice. Table VII describes the number of 
calibration levels, replicates at each level, and ranges in ng of 
amounts injected into the gas chromatograph. Dataset A is an 
"ideal" set, a set that looked ideal at the time i t was recorded. 
Dataset B is a set of data taken over two days under constant 
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136 TRACE RESIDUE ANALYSIS 

detector sensitivity. Dataset C is a set of data taken over two 
days under changing detector sensitivity. Dataset D has values 
where an artifact compound was present in the same peak as 
fenvalerate which altered the areas of smaller peaks. Dataset E 
has the points containing the artifact removed from the set. 
Dataset F has a limited range and was s t i l l found to be non-linear 
when log-log transformation was performed. 

Gas chromatographic data was obtained on a Tracor Model 220 
gas chromatograph equipped with a Varian Model 8000 autosampler. 
The analysis column was a 1.7 m "U" column, 4 mm id , f i l led with 
3% SP-2250 packing (Supelco, Inc., Beliefonte, PA) held at 
200° C. The injection temperature was 250° and the 
nitrogen carrier gas flow rate was 60 mL/min. The detector 
temperatures were 350° for electron capture and 190° for 
flame photometric. Detector signals were processed by a Varian 
Vista 401 which gave retention times and peak areas. 

The symposium Appendix contains a l l the raw data sets 
analyzed in this paper. 

General Analytical Plan. A six step process is described to 
calculate the amount or concentration values of unknown samples 
using chromatographic response values and calibration graphs that 
were constructed by regression. The steps are: 
1. Instrumental response values of the standards were transformed 

according to Tukey^s simple family of power transformations 
( 17_ ) and described later by Box-Cox ( 18 ) to a point where a 
statist ical test of constant variance was accepted. In this 
work the state of constant variance was tested by the Hartley 
test ( 19 ). Response variances were calculated at each amount 
level. The H statistic is then found by dividing the maximum 
variance by the minimum variance, each taken from any level. 

2. The amount data corresponding to the response values in 1 above 
were transformed by the same general family of power 
transformations until linearity was obtained. The F-test 
statistic that relates lack of f i t and pure error was used as 
the criterion for linearity. 

3. The transformed response values were regressed on the trans
formed amount values using the simple linear regression model 
and ordinary least squares estimation. The standard deviation 
of the response values (about the regression line) was calcu
lated, and plots were formed of the transformed response values 
and of the residuals versus transformed amounts. 

4. The Working-Hotelling confidence band ( 20 ) was then 
constructed around the estimated regression line. 

5. Unknown amounts and error limits of those amounts were 
predicted by the Lieberman, Miller and Hamilton method ( 21̂  ). 

6. The predicted transformed amount and amount values and their 
interval limits were transformed back to their original units. 

Though the six-step procedure is complicated, i t is easily 
implemented on a computer. Figure 1 illustrates this process. 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 
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Figure 1. Plots showing the Calibration Process. A. Response 
transformation to constant variance: Examples showing a. too 
l i t t l e , b. appropriate, and c. too much transformation power. 
Amount Transformation in conforming to a (linear) model. C. 
Construction of p. confidence bands about the regressed l i n e , 
response error bounds and intersection of these to determine i 
the estimated amount i n t e r v a l . 
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138 TRACE RESIDUE ANALYSIS 

S t a t i s t i c a l Calibration 

In the cal i b r a t i o n problem two related quantities, X and Y, are 
investigated where Y, the response variable, i s r e l a t i v e l y easy to 
measure while X, the amount or concentration variable, is 
r e l a t i v e l y d i f f i c u l t to measure in terms of cost or e f f o r t . 
Furthermore, the measurement error for X i s small compared with 
that of Y. The experimenter observes a c a l i b r a t i o n set of N pairs 
of values ( x ^ y i ) , i * l , . . . , N , of the quantities X and Y, 

being the known standard amount or concentration values and 
the chromatographic response from the known standard. The 

c a l i b r a t i o n graph i s determined from this set of c a l i b r a t i o n 
samples using regression techniques. Additional values of the 
dependent variable Y, say y.*, j*l,...,M, where M is 
arbitrary, are also observed whose corresponding X values, x * 
are the unknown quantities of interest. The s t a t i s t i c a l 
l i t e r a t u r e on the c a l i b r a t i o n problem considers the estimation of 
these unknown values, x *, from the observed y.*, and the 
equally important aspect of calculating the upper and lower bounds 
for x *. 

The technique for obtaining interval estimates for X*, 
discussed in this section, i s presented in the paper by Lieberman, 
M i l l e r , and Hamilton ( 21^ ) and based on the Bonferroni inequality 
( 22 ) described below. Other methods are found in the references 
( 2 3 , 2 4 ) . 

The simple linear regression model w i l l be assumed throughout 
this section. That i s , 

* i - 0 O + / * , x i + e i <X> 
where i=*l,...,N, e^ are independent errors with constant 
variance, and (x ,y^) are observations from the standard 
ca l i b r a t i o n sample. 

Since data from chromatography standards ty p i c a l l y do not 
s a t i s f y the assumptions of constant variance nor l i n e a r i t y , a 
procedure described above for f i t t i n g a family of transformations 
on the y and w i l l be used. We assume for the rest of 
this section that the above model i s s a t i s f i e d for the transformed 
data • 

Bonferroni Interval Estimates. Interval estimates for the 
unknown X*, referred to as unlimited simultaneous discrimination 
intervals ( 21 ), are based on the estimated regression line of 
y. on x., and the confidence interval (on the Y-axis) 
about trie response y * for an unknown. The resulting interval 
estimates have the property that for at least 1 0 0 ( 1 - a )% of the 
d i f f e r e n t c a l i b r a t i o n sets, at least 100P% of the amount intervals 
estimated from that c a l i b r a t i o n w i l l contain true unknown amounts 
x * . The ( 1 - a ) confidence refers to the uncertainty inherent 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 139 

in the estimation of the calibration line, 
A A A 
y i = @0 + A? | X i 

2 
and the response variance, (J , whereas the probability P 
refers to the sampling distribution of the unknown samples 
V -

J The Bonferroni interval estimate of X*f given Y*, is found in 
three moves. Firs t , the Working-Hotelling confidence band for the 
regression line 

E(Y) - p0 + £ , X 

is obtained ( j25 ). Next, the confidence interval (on the Y-axis) 
for the true value of Y*, say U , is determined. Lastly, the 
Bonferroni inequality is invoked to combine the two proceeding 
confidence statements, each made with the confidence ( l - a / 2 ) , to 
yield an interval estimate for X* with confidence at least ( l - « ) . 
The confidence band on the regression line and the confidence 
interval on U are intersected and the Bonferroni interval 
estimate of X* is found by projecting the intersection onto the 
x-axis. Figure lc illustrates the procedure. If \J is in 
the interval on the Y-axis and i f the hyperbolic confidence band 
contains the line 

then the shaded region must contain the point (X*, p0 + /?, X*) and 
hence, X* must l ie in the interval on the X-axis, the interval 
estimate for X*. 

With confidence ( l - a / 2 ) the Working-Ho telling confidence 
band contains the true line 

E(Y) = 0 O +0,X 

and with (1- a / 2 ) confidence the true mean, U # of Y*, is 
contained in the interval about Y*. The Bonferroni inequality 
guarantees a confidence coefficient of at least (1-a) that both 
statements are true. The steps in the mathematical construction 
of these confidence intervals are given below and in Lieberman, 
Miller and Hamilton ( 11 ) and Hunter ( 26 ). 

Move 1. First , the Working-Hotelling confidence band for the 
true regression line 

E(Y) = j8 0 

is obtained with confidence coefficient ( l - a / 2 ) . For any X, the 
bounds are 
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140 TRACE RESIDUE ANALYSIS 

where 

Y - W s(Y) <_ 0O + /?,X <_ Y + W s(Y) (2) 

2 W 
A 
Y 

s(Y) 

2 F (1 - a /2; 2, N-2) 
A A 

- P0 + i M 

MSE 
(X - x)2 

+ 
N 

2 U . - X) 2 . 

and F(P; n ,n 2) is the P percentile of the F distribution 
with n^ and n^ degrees of freedom, and MSE is the 
error variance about the regression line. 

Move 2. Next, the confidence interval for the true mean of Y * is 
constructed such that, for a given Y * , the 100P% confidence 
interval for U v . is 

Y * - Z(P)(7 <_ <_ Y * + Z(P)<7 (3) 

where Z(P) is the appropriate percentile of the standard normal 
distribution. That is , each interval given by Equation 3 has 
probability P of containing the true mean of Y * . However, since <r 
is not known, an upper bound for <r can be found and inserted into 
Equation 3. Then an interval with probability at least P of 
containing the true mean of Y * , U , is obtained. 

(N-2)MSE/ <r2 has a chi square distribution with (N-2) 
degrees of freedom. To find the upper bound for <r , we use 

Pr{ a <_ (N-2)MSE/ c r 2 } = 1 - a /2 

where the value â  is the lower a/2 percentile point of the chi 
square distribution with (N-2) degrees of freedom. Thus, 

Pr{ a 2 _< (N-2)MSE/a} = 1 - a / 2 

Thus the unknown standard deviation a can be bounded above by 

(N-2) MSE 
(4) 

X2( */2;N-2) 
with probability ( l - a / 2 ) . By the Bonferroni inequality, both 
Equations 2 and 4 are correct with probability of at least (1- a ) . 
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9. KURTZ ETAL. Linear Calibration Graph and Its Confidence Bands 141 

Move 3. The Working Hotelling confidence band about the 
regression line 

i s intersected with the interval on the Y-axis about v.* and 
the intersection i s projected onto the X-axis, Figure lc 
i l l u s t r a t e s how Steps 1 and 2 are combined to yi e l d the interval 
estimate for X*. 

If the estimated regression line has positive slope, then the 
upper bound for X*, denoted B+, i s the solution to the equation 

(N-2) MSE 
Pn + £. X* " W s ( Y ) = Y* + Z(P)/ ; 
° ' 1 ^ ( «/2,N-2) 

and the lower bound for X*, denoted by B-, is the solution to the 
equation 

(N-2) MSE 
PQ + £.X* + W s(Y) = Y* - Z(P)/ 5 

1 % ( « / 2 > N - 2 > 

Since s(Y) i s a function of X*, the roots of these equations are 
given by 

B- = X -

/?,(Q-Y*+Y) + / R (Q-Y*+Yr + 5J(Xj-X)2 (y8,2-R) 

p{ (Y*-Y+Q) + / R 

B+ = X + 

• . - i ( x r x ) 2 -
(Y*-Y+Q)2 + (jSp-R) 

where 

R = 2 F ( l - «/2;2,N-2) MSE / S U ^ X ) 2 

Q = Z(P) 
(N-2) MSE 

X2( «/2;N-2) 
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142 TRACE RESIDUE ANALYSIS 

Discussion of S t a t i s t i c a l Methodology. Previous work using 
similar s t a t i s t i c a l methods to these are given by Garden, 
Mitc h e l l , and M i l l s ( 4̂  ). They use weighted least squares to 
resolve the non-constant variance of the response signal for 
d i f f e r e n t concentrations, whereas we transform the response to 
achieve constant variance. 

A point which may need emphasis, stated c l e a r l y in Hunter 
( 26_ ), i s the precise interpretation of the confidence band about 
the predicted amount. This i s important since without a c l e a r l y 
understood meaning, the interval w i l l not be useful for assessing 
the precision of the predicted amounts or concentrations nor for 
comparing the results from various laboratories. Another reason 
the user of these methods must understand the interpretation i s 
because increased precision can be achieved in at least two ways -
by additional rep l i c a t i o n of the standards, which reduces the 
width of the confidence band about the regression l i n e , and by 
performing multiple determinations on the unknowns, which reduces 
the width of the interval about the mean instrument response of 
the unknown. The interval for U ^ i s then given by 

where Y* i s the average of the m determinations of the unknown. 
The frequency interpretation of the interval estimates on the 

unknown amounts i s given by the following ( 27 ): With at least 
1- a confidence, based on the sampling characteristics of the 
observations on the standards, at least P proportion of the 
interval estimates made from a particular c a l i b r a t i o n w i l l contain 
the true amounts. The Bonferroni inequality insures the 1- a 
confidence since the confidence interval about the regression line 
and the upper bound on a are each performed using a l - a / 2 
confidence c o e f f i c i e n t . Hence, the frequency interpretation 
states that at least ( 1 - a ) proportion of the standard 
calibrations are such that at least P proportion of the intervals 
produced by the method cover the true unknown amounts. For the 
remaining a proportion of standard calibrations the proportion of 
intervals which cover the true unknown values may be less than P. 

Results and Discussion 

Response Transformation. Step 1. We found that the c a l i b r a t i o n 
graph response data obtained from gas chromatography seldom have 
constant variance along the length of the graph. The data in 
Tables I-III c l e a r l y show that the larger the response value the 
larger the variance of the response at that l e v e l . Fenvalerate in 
Table I, chlordecone (kepone) i n Table II and chlorothalonil in 
Table III have the information for untreated data (at a 

Y* + Z(P) 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 143 

Table I. Comparison of Transformed Response Variances for Several 
Powers of Transformation. Fenvalerate Data on the 

Electron Capture Detector. 

Transformation Power 

Typical 
Amount,ng Response 1.0 0.5 0.15 Log 

0.05 1 0.0042 0.00 1 0.000 10 0.000 85 
0.25 6 0.031 0.00 2 0.0000 4 0.000 19 
1.0 24 0.090 0.00 1 0.0000 1 0.0000 3 
5.0 125 6.8 0.0 16 0.0000 5 0.000 10 

25. 750 173. 0.0 71 0.0000 6 0.0000 7 
100. 3000 3400. 0. 338 0.000 11 0.0000 8 

H Statistic (a) >> 301 10.3 24.5 

(a) Cri t ical H (0.95, 6 levels, 6 replications) - 18.7 

Table II. Transformed Response Variances Converging to a Constant 
Level. Kepone Data on Electron Capture. 

Transformation Power 

Amount Level, ng 1.00 0.50 0.30 0.25 0.10 

0.01 0.002 0.000 7 0.000 27 0.000 19 0.0000 34 
0.05 0.028 0.00 26 0.000 63 0.000 39 0.0000 47 
0.20 0.25 0.00 53 0.000 71 0.000 38 0.0000 29 
0.38 0.57 0.00 58 0.000 58 0.000 29 0.0000 18 
1.0 0.84 0.00 34 0.000 24 0.000 11 0.00000 i 5 

H Statistic ( a) 400. 8.5 2.9 3.6 9.0 

(a) Cri t ica l H (0.95, 5 levels, 3 replications) = 202 
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144 TRACE RESIDUE ANALYSIS 

Table III. Transformed Response Variances nearly not Converging 
to a Constant Level. Chlorothalonil Data on Electron Capture. 

Transformation Power 

Amount Level, ng 1.00 0.25 0.20 0.15 0.10 

0.02 0.01 0.000 2 0.000 1 0.0000 6 0.0000 2 
0.10 2.9 0.00 35 0.00 17 0.000 75 0.000 26 
0.40 2.6 0.000 4 0.000 2 0.0000 6 0.0000 2 
1.0 24. 0.000 3 0.000 1 0.0000 4 0.0000 1 
4.0 260. 0.000 5 0.000 2 0.0000 5 0.0000 1 

20. 4000. 0.00 24 0.000 7 0.000 19 0.0000 4 

H Statistic (a) 1500. 18. 15. 19. 26. 

(a) Crit ical H (0.95, 6 levels, 5 replications) = 29.5 

transformed power of 1) shown in the f irs t column. Unpublished 
data in the author's laboratory for liquid chromatographic and 
visible spectroscopic analyses have shown the same result. 

This situation shows two problems: The application of 
ordinary least squares estimation, which requires constant 
variance, is not appropriate with untreated data. Then, the large 
variance of the largest numbers in such data excessively controls 
the direction or slope of the graph. 

The solution to the problem of non-constant variance (or 
heteroscedasticity) rests in several suggestions. The simplest is 
to limit the range of the graph ( 1 ). The range, however, would 
be so small that i t would be ineffective to use i t practically. 
One acceptable suggestion is to perform the regression with 
weighted response values ( 4 ) where the weights are the inverse 
of the variance at each level of the calibration. However, since 
the true weights are not known, the determination of the weight 
values at each level of the calibration is not reliable. 

Another solution to the problem of non-constant variance is 
to transform the response data. A common way of transforming data 
has been by taking the logarithms of both the response and amount 
variables ( 8-10 ). However, for a l l the data we looked at, the 
log transformation has been too strong. See Tables I and V. 
Table V shows that in some data sets the log transformation is 
acceptable, but this is usually as a result of less perfect data 
and not an inherent quality. 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 145 

The authors, Box and Cox, describe ( 18 ) a family of power 
transformations. This family includes the"Tollowing calculations: 
The response is raised to the 2, 1, 0.5, 0.25, 0.1 power, the log 
of the response i s taken, and the negative reciprocal of the 
response is raised to the 0.5 power. We chose to simplify the 
series by starting with a power of 0.50 proceeding downward to 
0.10 in units of 0.05. We also included the logarithm of the 
response for comparison purposes which has a strength 
corresponding to the l i m i t as the power goes to zero. 

Constant Variances. Response values from the electron capture 
chromatographic analysis of the insecticide fenvalerate, were 
transformed by the process described above. The six response 
values at each of six di f f e r e n t amount levels were transformed by 
a series of powers, and the variances calculated at each level 
(Table I ) . For a transformation power of 0.5 the value of the 
variances increased from 0.001 to 0.338 as the response 
increased. When the logarithm of the response was used, the value 
of the variances decreased from 0.00085 to 0.00008 as the 
response increased. Raising the responses to the 0.15 power gave 
calculated variances that remained roughly constant across the 
range of amounts. 

There are a large number of s t a t i s t i c a l procedures published 
to test for constancy of variance ( 28-30 ). The Hartley Test was 
chosen for this task because of i t s simplicity ( _19̂  ). Selected 
c r i t i c a l values for the H s t a t i s t i c at a =0.05 are shown in Table 
IV for reference purposes. 

Table IV. Percentiles of the H S t a t i s t i c Distribution. 
H(l- a ; r,n) where P {H <= H (1- a ;r,n)} = 0.95 

a = 0.05 

r (a) 

n (a) 2 3 4 5 6 

3 39.0 87.5 142 202 266 
4 15.4 27.8 39.2 50.7 62.0 
5 9.60 15.5 20.6 25.2 29.5 
6 7.15 10.8 13.7 16.3 18.7 
7 5.82 8.38 10.4 12.1 13.7 

(a) r = no. of concentration levels, n = no. of samples/level 
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146 TRACE RESIDUE ANALYSIS 

From the authors' experience not a l l real data sets can be 
transformed to constant variance using power transformations. 
Instrumentation imperfections in our laboratory resulted in data 
that had variable variances despite our attempts at 
transformation. The transformed chlorothalonil data set, as shown 
in Table III illustrates a set where the transformations attempted 
nearly failed to give constant variance across the response range; 
in this case the Hartley criterion was barely satisfied. The 
replications at the 0.1 and 20. ng levels had excessively high 
variance over the other levels. An example where constant 
variance was easily achieved utilized data of the insecticide 
chlordecone (kepone) also on the electron capture detector. Table 
II shows that using a transformation power of 0.3 resulted in 
nearly constant variance. 

Transformation Power of Selected Data Sets. Hartley statistic 
values are shown in Tables I-III for fenvalerate, chlordecone, and 
chlorothalonil. In each case a power transformation was found of 
sufficient size at a 95% probability which satisfied the H 
criterion. For fenvalerate the power of 0.15 was satisfactory for 
constant variance. For chlordecone the whole range of powers from 
0.50 to 0.10 satisfied the cr i t i ca l H value (listed in order of 
increasing transformation power). Despite apparent non-constancy 
of data for chlorothalonil shown in Table III, the cr i t i ca l H was 
satisfied for the range in power transformation from 0.25 to 0.10. 

The response transformation powers for a l l data sets studied 
for this work are given in Table V. The acceptable range, judged 
from the Hartley test, for each individual data set is l isted. 
The optimal power is also listed even though some sets did not 
have any acceptable power of transformation. 

For fenvalerate the minimum H statistic was found to be at a 
transformation power of 0.15. The power range of 0.15 to 0.10 
gave an H statistic less than or equal to the cr i t i ca l H value. 
The various Datasets A-F were a l l of fenvalerate. We chose to 
transform the response values of these sets to the same power as 
required for the fenvalerate data set since we wished to use these 
data sets as examples of "unknown" data sets or as examples of 
poor quality standard sets. If the compound has an inherent 
analysis quality relating to the response variance, the quality of 
the poor sets is reflected in differences in the error bands. The 
acceptable ranges for the Datasets A-F, as shown in Table V, did 
include the 0.15 power eventually used in a l l cases where an 
acceptable H value was found. 

The regression for chlorothalonil was different from that of 
fenvalerate in its optimal power probably due to its shorter a-
mount range (Table VII), 1000 to 1 where the latter was 2000 to 1. 

Chlorpyrifos had an amount range of only 500 to 1. It was 
different from others cited by its flame photometric (sulfur mode) 
detection. It is interesting, however, that the power transfor
mations for both chlorothalonil and chlorpyrifos were so similar. 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 147 

Table V. Optimal and Acceptable Range of Response Transformation 
Power (a) Satisfying the Hartley Test for Data Sets 

Determined in Various Detectors. 

Calibration Response Transformation 
Set (b) 

Mode Acceptable Range 
Data Set r,n (c) Descending Power Op tima. 

Fenvalerate 6,6 EC 0.15 - 0.1 0.15 
Dataset A 5,2 EC 0.3 - 0.1 0.3 
Dataset B 5,5 EC none 0.3 
Dataset C 5,4 EC 0.3 - log 0.2 
Dataset D 5,4 EC none 0.7 
Dataset E 4,4 (d) EC none 0.6 
Dataset F 4,2 EC 0.3 - log 0.2 

Chlorothalonil 6,5 EC 0.3 - 0.1 0.2 

Chlorpyrifos 5,6 FP 0.3 - 0.1 0.2 

(a) transformation power performed in steps of 0.05 
(b) r = number of concentration levels i , n - samples/level 
(c) EC = electron capture, FP • f lame photometrie 
(d) unequal number of standards , n, at each level 

Amount Transformation. Step 2. The amount transformation was 
performed in a way similar to that of response by use of a power 
series but for a different reason. In this case linearity was 
desired in order to use a simple linear regression model. This 
transformation therefore required a test for satisfactory 
conformity. One can use a variety of criteria including the 
correlation coefficient or visual examination of the plot of 
residuals verses amount. We chose the F test for lack of f i t , 
F =*MSLF/MSPE, based on the ratio mean square for lack of fit^ 
(MSLF) over the mean square for pure error (MSPE) ( 31̂  ) . F 
follows the F distribution with (r-2) and (N-r) degrees of 
freedom. A value of F <F(l-a ;r-2,N-r) is consistent with the 
linearity of the regression equation. Since the data were 
manipulated by transforming the amount values £o obtain linearity, 
i . e., to achieve the smallest lack of f i t F stat ist ic , the 
significance level of this test is not reliable. 

Bickel and Doksum ( 32 ) discuss the influence of searching 
for the proper transformation on the estimation of the regression 

American Chemical 
Society Library 

'1155 16th St. N. W. 
Washington, D. C. 20036 
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148 TRACE RESIDUE ANALYSIS 

l ine. For cases where the error variances are small, such as we 
have with calibration curves, they claim that the estimated slopes 
and intercepts are much less accurate than the estimated variances 
indicate. Carroll and Ruppert ( 33 ) also discuss this 
phenomenon. Additional investigation of these type of data is 
required to properly assess the effect on the prediction accuracy 
in searching for the best transformation. 

The amount transformation process is illustrated with data 
for chlorpyrifos in the flame photometric detector, phosphorus 
mode, and shown in Table VI. Level 1 transformations were 
calculated where the amount power was increased by 0.05 units for 
each step. At an amount power of 0.20 the F statistic of 32.7 
showed a minimum but at a confidence level of 95% did not satisfy 
the F test for linearity. Power steps changed by only 0.01 and 
0.001 units in the vicinity of the minimum were then calculated as 
shown in levels 2 and 3. The best linearity was found^in this 
case at a power transformation of 0.182 although the F 
statistic of 8.53 did not indicate linearity when compared with 
the cr i t i ca l F of 2.99 at P=.95. Calculations at these second and 
third levels were not always necessary and even when performed did 
not always lead to a satisfactory condition of linearity. 

At any transformation level i f the minimum F statistic were 
less than or equal to the cr i t i ca l F value, our work was done and 
the confidence band calculations began. Otherwise we either 
accepted a lack of f i t (and would note i t in published results), 
segmented the graph to shorter lengths, or sought a non-linear or 
higher order model. 

Table VI. Convergence of the Optimal Amount Transformation for 
the Determination of Data Linearity. 

Chlorpyrifos Data with Flame Photometric Detection. 

Level 1 Level 2 Level 3 
0.05 power steps 0.01 power steps 0.001 power steps 

Amount F Amount F Amount F 
Power Statistic Power Statistic Power Statistic 

0.30 932. 0.21 65.7 
0.25 330. 0.20 32.7 0.184 8.93 
0.20 32.7 0.19 13.6 0.183 8.66 

> > 0.182 ** 8.53 
0.15 82.5 0.18 8.71 0.181 8.55 
0.10 514 0.17 18.4 0.180 8.71 
log 2580 0.16 42.9 
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9. K U R T Z ET A L . Linear Calibration Graph and Its Confidence Bands 149 

Table VII. The Power for the Amount Transformation Achieving the 
Best Linearity on Chromatographic Data. 

Amount Range 
on the Col, ng 

Calib. 
Set 

r,n(a) 

Transform. Power 

Response Amount 

Linear 
Prob. 

Level 
Standard 
Deviation 

Fenvalerate 
0.05 - 100 6,6 0.15 0.16 0.00 0.014 

)a tase ts 
A: 0.05 - 20 5,2 0.15 0.17 0.05 0.016 
B: 0.05 - 20 5,5 0.15 0.17 0.00 0.018 
C: 0.05 - 20 5,4 0.15 0.18 0.46 0.037 
D: 0.05 - 20 5,4 0.15 0.19 0.50 0.045 
E: 0.25 - 20 4,~4 0.15 0.16 0.47 0.013 
F: 0.05 - 5 4,2 0.15 0.19 0.30 0.009 

Chlorothalonil 
0.02 - 20 6,5 0.20 0.16 0.47 0.022 

Chlorpyrifos, P-mode 
1.00 - 500 5,6 0.20 0.18 0.00 0.012 

(a) r = No. of levels, n = No. of samples at each level. 

Table VII displays the results of the test for linearity 
after transforming the amount to a minimum F statist ic . 
Fenvalerate, Dataset B, and chlorpyrifos a l l demonstrated 
significant linear lack of f i t . This was due to relatively small 
variations about the graph and a cubic or sigmoid shape to the 
curve not removable by these transformations. The remaining 
Datasets and chlorothalonil did not demonstrate significant lack 
of linear f i t due to larger variations about the graph, a shorter 
range, or a combination of the two. 

The optimal power transformations on the amounts, when 
examined in steps of 0.01, a l l f e l l between 0.16 and 0.19 for the 
pesticides tested (Table VII). These values are very similar to 
the powers required for the response transformation which varied 
between .15 and .20. 

Regression of Transformed Values. Step 3. The transformed 
response values were regressed on the transformed amount data 
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150 TRACE RESIDUE ANALYSIS 

using a simple linear regression model and least squares 
estimation. Table VIII shows the estimated coefficients and their 
standard errors (se) for each of the regressions performed. 
Figure 2a-e shows the plot of the regression line with 
superimposed data points for 5 of the data sets studied. 

Table VIII. Regression Coefficients and Standard Errors for 
Illustrated Data Sets Using the Optimally Transformed 

Data for X and Y. 

Y' = a + b X' + error 

Intercept Slope 
Coefficient 

Y (a) X (a) 
Data Set Power a b Power 

Fenvalerate 0.15 0.033 0.0010 1.580 0.0008 0.16 

Da tase t A 0.15 0.005 0.0050 1.663 0.0044 0.17 
Da tase t B 0.15 0.022 0.0021 1.663 0.0019 0.17 
Da tase t C 0.15 0.136 0.0054 1.570 0.0046 0.18 
Da tase t D 0.15 0.256 0.0061 1.362 0.0052 0.19 
Da tase t E 0.15 -0.147 0.0039 1.743 0.0031 0.16 
Da tase t F 0.15 0.310 0.0036 1.418 0.0037 0.19 

Chlorothalonil 0.20 -0.523 0.0022 3.205 0.0020 0.16 

Chlorpyrifos 0.20 -0.135 0.0011 1.134 0.0005 0.182 

(a) Y' corresponds to transformed response, 
X^ to transformed amount 

Examination of Data. At this point, examination of the plot of 
regression residuals verses transformed amount showed two 
conditions: First , the condition of constant variance across the 
graph was shown by observation of the spread of points at each of 
the amount values. Second, the linearity was checked by verifying 
that the clustering of the residuals was around zero and did not 
show a normal or inverted "U" shape or an "SM shape throughout the 
range of amount values. When the top end of the graph dropped off 
(due to a saturation of the detector) the effect of forcing the 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 151 

0.5 8.7 e.s I.I 13 IS 

Figure 2. Series of plots of five cases showing linear regression 
model with raw data points (a-e) and the 0.975 Working-Hotelling 
confidence limits about the regressed line (aa-ee). The let t e r a 
and aa refers to chlorothalonil and b-e and bb-ee refer to 
Datasets B, C, D, and E, respectively. 
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152 TRACE RESIDUE ANALYSIS 

data to l i n e a r i t y by transformation resulted in an "S" shaped 
curve. Curvature at the top end of the graph was tolerated more 
when the variance of the data points at each amount level was 
higher because a s u f f i c i e n t l y larger pure error term of the F 
s t a t i s t i c lowered the value of the s t a t i s t i c . With long 
chromatographic graphs and with data that had consistent and low 
variance, the l i n e a r i t y tests became quite sensitive. 

Confidence Band Calculation. Step 4* Following the 
determination of the proper regression graph from the transformed 
data, the Working-Hotelling confidence limits were calculated. 
These bands were calculated at an a =0.025 which, when combined 
with the response error bounds a =0.025 (see Step 5), gave an 
overall a =0.05 by the Bonferroni inequality. The confidence band 
intervals calculated after inverse transformation for the data 
sets cited in this work are presented in Table IX. It must be 
emphasized that the intervals found in Table IX were calculated at 
an a =0.025. The graphs for five of the data sets are shown in 
Figure 2(aa-ee). 

Table IX. Confidence Intervals for the Predicted Response from 
Inverse Transformed Data. a =0.025. 

Confidence Interval 

At Min. Amount Mean Interval At Max. Amount 
Data Set 0.05 ng(a) a t Mean 20 ng(a) 

Fenvalerate 1.01-1.16 102 100-105 550- 574 
2990-3150(100) 

Da tase t A 0.85-1.24 49 45- 52 830- 970 
Da tase t B 1.03-1.28 52 50- 54 890- 980 
Da tase t C 1.08-1.80 57 52- 63 910-1140 
Da tase t D 0.87-1.61 41 36- 46 590- 780 
Da tase t £ 4.00-4.90(.25) 101 98-105 660- 720 
Da tase t F 1.82-2.30 25 24- 26 200- 227(5.0) 

Chlorothalonil 2.20-2.59(.02) 171 168-175 2130-2230 

Chlorpyrifos, 0.95-1.05(1.0) 33 33- 34 434- 450(500) 
P-mode 

(a) () gives different minimum and maximum amounts. 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 153 

We chose to illustrate data at the mean point of the graph 
where the interval is the shortest and at the extreme ends where 
the interval is the longest. The low-scatter data sets, 
chlorothalonil and Dataset B, were found to have very narrow 
bands. Dataset C, chosen by combining data collected on two 
different days when the detector sensitivity was definitely 
different, produced a band wider than that of Set B. Datasets D 
and E are to be compared: The points in D at the low end of the 
graph contained various amounts of a contaminant so that many 
responses of the chromatograph in that region were too large 
resulting in a large variance. The width of the confidence band 
was obviously larger than that for Dataset B. When the data 
points representing the peaks containing the contaminant were 
properly removed from the dataset, the remaining points formed the 
Dataset E. This set had a shorter range and fewer points. It 
also had a narrower confidence band. 

We represent the width of the confidence band numerically by 
the bandwidth ( 1 ) which is defined: 

Bandwidth = {(Upper Limit-Lower Limit)/2}100% 
Predicted Response 

The Bandwidth is essentially a normalized half confidence 
band. The confidence interval bandwidths for 9 data sets using 
inverse transformed data are given in Table X. The bandwidths are 
approximately the vertical widths of response from the line to 
either band. The best band was found for chlorpyrifos, 1.5%, at 
the minimum width (located at the mean value of the response) and 
4.9% at the minimum or lowest point on the graph. Values for 
fenvalerate and chlorothalonil were slightly higher, 2.1-2.2% at 
the mean level. The width at the lowest amount for the former was 
smaller due to a lower scatter of its points. The same reason 
explains the difference between fenvalerate and Dataset B. 
Similarly, the lack of points in Dataset A produced a band that 
was twice as wide when compared to Dataset B. Dataset C gave a 
much wider band when compared to Dataset B. 

The widest bandwidth was found in Dataset D, the set contain
ing artifacts. Its width was 11.5% at the mean and 31% at the 
lowest amount of the predicted response! When the chemical error 
was eliminated and the data recalculated as Dataset E, the band-
widths were only about 1/3 as much. Set E was now comparable to 
Set B despite having only 15 data points compared to the 25 for B. 

Residue chemists would be most interested in comparable 
confidence bands or confidence bandwidths. These values become a 
performance characteristic for any detection system. The values 
indicate the precision of not only the prepared standards but also 
the precision of the overall operating detection system. It is 
ultimately envisioned that a given system of a separation column 
in a chromatograph with a certain type of detector should give 
bands of standardized values. If a chemist finds he has not met 
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154 TRACE RESIDUE ANALYSIS 

Table X. Confidence Interval Bandwidths from the Regression of 
Transformed Data Sets. Inverse Transformed Data. 

a =0.025. 

Confidence Interval Bandwidth, % (a) 

At Min. Amount At Mean Amount At Max. Amount 
Data Set 0.05 ng(b) 20 ng(b) 

Fenvalerate 6.9 2.2 2.1 
2.6(100) 

Data set A 19.3 6.8 8.0 
Da tase t B 10.9 3.9 4.7 
Da tase t C 26. 9.2 11.1 
Da tase t D 31. 11.5 14.1 
Da tase t E 10.2(.25) 3.6 4.5 
Dataset F 11.1 4.9 6.3(5.0) 

Chlorothalonil 8.2(.02) 2.1 2.3 

Chlorpyrifos, 4.9(1.0) 1.5 1.7(500) 
P-mode 

(a) Bandwidth, % = {(Upper C.I . - Lower C.I . )/2}{100%} 
Predicted Response 

(b) () gives different minimum and maximum amounts. 

such values, then he must examine his system to find where i t can 
be improved. Hence i t is recognized that there should be a lot of 
data published in this regard in order that these standards are 
developed. One caveat is necessary: The amount level at which 
the bandwidth is calculated needs to be reported as part of the 
performance characteristic. 

There is one final observation using the bandwidth informa
tion: The data of Tables IX and X suggest that the flame photomet
ric detector (chlorpyrifos) produces more consistent data than the 
electron capture detector. The chlorpyrifos data clearly had the 
narrowest bandwidth yet both the range and sample size of this set 
were comparable to the others studied. The range of chlorpyrifos 
was 500 to 1 whereas those of fenvalerate and chlorothalonil were 
2000 to 1 and 1000 to 1, resp. Chlorpyrifos had 30 samples 
whereas the other two had 36 and 30, resp. Chlorpyrifos had 5 
analysis levels while the other two had 6 each. More data of this 
sort is needed to compare various detector systems. 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 155 

Calculation of Response Error Bounds. The error bounds for each 
step in the overall process have been individually calculated in 
order that the reader appreciate the magnitude of the error at 
that step. This paragraph wil l describe the error bounds in the 
response error band. The bounds for a given data set are a l l 
constant regardless of the magnitude of the response. They are, 
however, dependent on the number of determinations of the unknown. 
The bounds calculated in this paper were made under the assumption 
of a single determination of a given unknown. Since the bounds 
are inversely proportional to the square root of the number of 
unknown determinations, ut i l iz ing a second determination of that 
unknown wil l reduce the bounds by the square root of 2 to 70% of 
the bounds for one determination. See Equation 5. 

The response error bounds and the response error bandwidths 
for a single unknown determination are given in Tables XI and XII. 
These values are a l l much larger than the regression confidence 
bands because of the much smaller number of data points involved. 
In comparing the response error bounds (Table XI) to the 

Table XL. Estimated Values of the Response Error Bounds from 
Inverse Transformed Data. a =0.025 where 95% of 

Response Unknowns Will Lie within the Response Error 
Bounds of the True Response. 

Estimated Response Error Bounds 

At Min. Amount Mean Interval At Max. Amount 
Data Set 0.05 ng(a) a t Mean 20 ng(a) 

Fenvalerate 0.85-1.36 102 91-115 520- 620 
2860-3300(100) 

Da tase t A 0.67-1.53 49 38- 61 770-1040 
Da tase t B 0.83-1.57 52 43- 62 830-1050 
Da tase t C 0.68-2.69 57 38- 84 790-1310 
Da tase t D 0.49-2.62 41 24- 65 490- 940 
Da tase t E 3.55-5.47(.25) 101 88-116 630- 770 
Da tase t F 1.62-2.55 25 21- 29 190- 240(5.0) 

Chlorothalonil 1.85-3.05(.02) 171 154-190 2040-2320 

Chlorpyrifos, 0.85-1.16(1.0) 33 31- 36 420- 460(500) 
P-mode 

(a) () gives different minimum and maximum amounts. 
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confidence interval on the regression line at mean levels (Table 
IX), values found were 24 to 5 response units for fenvalerate, 19 
to 4 for Dataset B, 8 to 2 for Dataset F, and 5 to 1 for 
chlorpyrifos. The comparison for a l l the datasets at the mean 
were in the ranges of 4-5 to 1. The comparisons at the minimum 
responses were 2-3 to 1 and those at the maximum response were 
1.8-4 to 1. Since the response error bounds are constant for a 
given experiment, the bandwidths get smaller and smaller as the 
response gets larger. 

Prediction of Unknowns. Step 5. The point estimate of unknown 
amounts is obtained from the intersection of the corresponding 
response value and the regressed line which is then projected down 
to the amount axis. The interval estimate for an unknown amount 

Table XII. Response Error Bound Bandwidths of Inverse Transformed 
Data. a =0.025 where 95% of Response Unknowns 

Will Lie within the Response Error Bounds of the True 
Response• 

Estimated Response Error Bound Bandwidth, % (a) 

Data Set 

Fenvalerate 

Da tase t A 
Da tase t B 
Da tase t C 
Da tase t D 
Da tase t E 
Da tase t F 

Chlorothalonil 

Chlorpyrifos, 
P-mode 

At Min. Amount 
0.05 ng(b) 

24 

42 
32 
72 
89 
22(.25) 
23 

25(.02) 

16(1.0) 

At Mean Amount 

11.9 

23 
18 
40 
51 
13.6 
15.7 

10.5 

7.7 

At Max. Amount 
20 ng(b) 

9.2 
7.0(100) 

14.9 
11.7 
26 
33 
10.2 

11.4(5.0) 

6.4 

4.5(500) 

(a) Bandwidth, % = {(Upper Bound - Lower Bound)/2}{100%} 
Predicted Response 

(b) () gives different minimum and maximum amounts. 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 157 

is obtained from the intersections of the upper and lower response 
error bounds with the lower and upper confidence bands which are 
projected down to the amount axis. This calculation puts the 
whole problem together as i t is dependent on the length of the 
calibration graph, the number of calibration points, and the 
scatter of the points. It is also dependent on the replication 
of unknowns analyzed and the total number of future unknowns to be 
determined. 

Estimated Amount Intervals. Estimated amount intervals, 
calculated from the example data sets, are shown in Table XIII. 
The bandwidths for this data are found in Table XIV. Typical 
estimated amount intervals are found in the analysis for 
fenvalerate. At 4 ng this compound gave a range of 3.5 to 4.5 ng 
at the confidence level described. This range was similar in the 
analysis for fenvalerate in Dataset E, chlorothalonil, and 
chlorpyrifos due to tight control of standards. These ranges 
amounted to bandwidth percentages of from 10 to 14%. In more 

Table XIII. Estimated Amount Intervals from Inverse Transformed 
Data. Overall a =0.05 where 95% of the Unknown 

Amounts Will Lie within the Estimated Amount Interval 
of the True Amount. 

Estimated Amount Interval 

At Min. Amount Mean Interval At Max. Amount 
Data Set 0.05 ng(a) a t Mean 20 ng(a) 

Fenvalerate 0.037-0.067 4.0 3.5 - 4.5 18. - 22. 
91. -110.(100) 

Da tase t A 0.028-0.083 1.5 1.16- 1.97 16.3- 25. 
Da tase t B 0.033-0.072 1.5 1.25- 1.85 17.3- 23. 
Da tase t C 0.018-0.113 1.6 0.98- 2.3 14.5- 28. 
Da tase t D 0.012-0.143 1.6 0.87- 2.7 13.4- 30. 
Da tase t E 0.190-0.32 (.25) 3.7 3.2 - 4.3 17.6- 23. 
Data set F 0.034-0.071 0.7 0.54- 0.80 4.3- 5.9(5.) 

Chlorothalonil 0.015-0.026(.02) 1.3 1.09- 1.43 18.1- 22. 

Chlorpyrifos, 0.82 -1.21 (1.0) 34. 31. -37. 470. -540.(500) 
P-mode 

(a) () gives different minimum and maximum amounts. 
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158 TRACE RESIDUE ANALYSIS 

routine analyses the bandwidths found in Datasets A, B, and F 
would be indicative of typical error found. For these the 
smallest bandwidth (at the mean of the graph) was in the range of 
20 to 30%. These bandwidths were typical of electron capture and 
phosphorus-mode flame photometric detection data uti l iz ing packed 
column chromatography with equipment described in the methods. 
They were also typical when the regression model chosen was f irs t 
order. Mean-level bandwidths greater than 20-30% are probably 
indicative that errors have been made in the analysis process that 
should not be tolerated. In this case techniques would be 
carefully scrutinized to find errors, outliers, or changing 
chromatographic conditions. These should be remedied and the 
analysis repeated whenever possible. Certain manipulation can be 
done to reduce the bandwidth values. For example, they would be 

Table XIV. Estimated Amount Interval Bandwidth from Inverse 
Transformed Data. Overall a =0.05 where 95% of the 
Unknown Amounts Will Lie within the Estimated Amount 

Interval of the True Amount. 

Estimated Amount Interval Bandwidth, % (a) 

At Min. Amount At Mean Amount At Max. Amount 
Data Set 0.05 ng(b) 20 ng(b) 

Fenvalerate 30 14 11 
9.2(100) 

Data set A 55 27 21 
Da tase t B 39 20 15 
Da tase t C 95 45 33 
Da tase t D 131 58 42 
Data set E 27(.25) 15 13 
Dataset F 37 20 16 (5.0) 

Chlorothalonil 28(.02) 14 10 

Chlorpyrifos, 20(1.0) 10 6.7(500) 
P-mode 

(a) Bandwidth, % = {(Upper Amount - Lower Amount)12}{100 %} 
Amount Best Estimate 

(b) () gives different minimum and maximum amounts. 
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9. KURTZ ETAL. Linear Calibration Graph and Its Confidence Bands 159 

reduced i f a higher order regression model were used to more 
closely f i t the data. Higher alpha values and lower probabilities 
could also be chosen. However, data and methods should not be so 
manipulated in order to produce an appearance of "improving" the 
quality of results, i . e . , the width of the estimated amount 
interval. 

Calibration Data Extrapolation Caveat. Since extrapolations 
cannot be done in performing proper regression line calculations, 
i t follows that there will be concern about interval estimates 
from data that do occur at the extreme ends of the range of 
standards. To avoid extrapolation we suggest that response values 
be limited to those values corresponding to the range of amounts 
of the calibration standards. At the extreme ends, however, one 
end of the estimated amount interval would then extend into an 
extrapolated region, the lower end at the minimum amount and the 
upper end at the maximum amount. 

For determining the estimated amount interval at the lower or 
minimum end of the regression line three cases arise: 1. The 
lower end can be calculated and is positive. 2. The lower end can 
be calculated and is negative and/or the interval is excessively 
long. 3. The lower end cannot be calculated because i t is 
negatively infinite. A similar situation exists at the maximum 
end of the regression line. In these cases the true uncertainty 
is properly reflected by the calculated amount uncertainty. The 
effects found in cases 2 and 3 could be studied to determine their 
possibility with various types of calibration data. This paper, 
however, wil l not delve into that aspect. 

Inverse Transformation to Real Values. Step 6. A l l of the 
statist ical steps are calculated with transformed data. With the 
inverse transformation as a final calculation the original units 
are recovered and evaluated as desired. 

The value of this work is to il lustrate the importance of 
including the estimated amount interval with every calculated 
amount estimate in written reports. These can be calculated at 
any response level. As an i l lustration of this process we can use 
the data of Table XIII. If an analysis of fenvalerate were being 
performed and the standards were those of Dataset A, an amount 
estimated to be 1.5 ng would be reported as having a total error 
range of 1.16 to 1.97 ng or in rounded figures 1.2 to 2.0 ng. 
With the standards of Dataset B, however, the 1.5 ng value had a 
range of 1.3 to 1.9 ng. This example shows that with more 
standards a higher precision was obtained (assuming the quality of 
the standards was equivalent). If the analyst used Dataset D 
standards, those containing an artifact peak in the standards 
would have to report that at 1.6 ng his range would be a much 
larger 0.9 to 2.7 ng. Clearly a client would prefer the former 
over the latter. 

 P
ub

lic
at

io
n 

D
at

e:
 J

ul
y 

15
, 1

98
5 

| d
oi

: 1
0.

10
21

/b
k-

19
85

-0
28

4.
ch

00
9



160 TRACE RESIDUE ANALYSIS 

In using data of this sort regulatory agencies would have to 
redefine various limits important to their work. For example, i f 
chlorothalonil had an "action" limit of 1.4 ng chlorothalonil (or 
appropriate concentration limit) and an analysis showed 1.3 ng 
present, what would they do with an amount interval of 1.1 to 1.4 
ng for this determination? Then, also with fenvalerate i f an 
"action" limit were 25 ng and the careless analyst using Dataset D 
found 20 ng present, its range of 13 to 30 might jeopardize the 
sale of food resulting from this determination. However, with 
some sharp observations and a l i t t l e more chromatographic 
determinations, ut i l iz ing Dataset E, the same sample would be 
found to contain 20 ng with a range of only 18-23 ng. A different 
conclusion might be reached. 

Model Selection. Various approaches can be used to select the 
best regression model, but most workers desire to use the 
simplest, the linear regression model. Higher order polynomials 
and spline methods have recently been studied and are reported in 
other papers of this volume ( 2,8 )• One common problem with 
chromatographic detectors is the loss of sensitivity at the top of 
the graph due to the inability of the detector to account for a l l 
of the molecules passing through. Attempting to linearize such 
data is often not possible. One solution for this problem is to 
segment the range needed into upper and lower regions so that a 
linear condition is achieved in each. The linear model is indeed 
the simplest with or without segmentation and the one that we used 
to study other aspects of the calibration problem, namely that of 
the calculation of the error bounds for unknowns. 

Regression Accuracy 

To demonstrate the accuracy of three data treatment methods we 
show the results of treating the same data in three ways: no 
transformation, log-log transformation, and the selected 
transformation as determined by this work. 

Four datasets are taken as examples for discussion, those for 
chlorothalonil, Dataset B (a general fenvalerate data set), 
Dataset F (a data set with a fair ly short range), and 
chlorpyrifos. The f irs t three sets were obtained with an electron 
capture detector and the last with a flame photometric detector on 
the phosphorus mode. Comparisons of accuracy were made in amount 
accuracy, the standard deviation of the response about the 
regressed line, and the calculated R-squared value for the 
regression. Tables XV-XVIII give the comparison data calculated 
at half and twice the lowest response, at a median response, and 
at 0.8 and 1.2 times the highest response. The f irs t and last 
conditions (data rows) in these tables from the standpoint of good 
laboratory practice were questionable because they would extend 
beyond the range of the data, but they were chosen to make a 
rigorous comparison. 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 161 

The data were also hand plotted on log-log coordinates. The 
graph for chlorothalonil showed detector saturation at highest 
levels where increasing amounts gave slightly lower responses. 
Data sets B and F showed no saturation at high amounts but rather a 
decided leveling off at lowest amounts yielding higher responses. 
Chlorpyrifos showed a very slight saturation at the highest level. 

Large differences were found at the lowest response values in 
a l l four data sets between the non-transformed data on one hand 
and the transformed data and the hand plotted data on the other 
hand. The amounts calculated by non-transformed linear regression 
at the lowest level for the four data sets were -2000, 860, 230, 
and -690%, respectively, different from the amount value 
determined by hand plotting. Those calculated by proper 
transformation regression as described by this paper were 9, 12, 
0.0, and 8.5% different from the amount value determined by hand 
plotting. Those calculated by a log-log transformation, a 
transformation seen in Table I and in unpublished work to be too 
strong, were -15, 12, 12, and 0.0% different. Clearly the 
non-transformed regression gave erroneous results at the trace 
level. Also, the proper transformation as described in this work 
actually appears to have been more accurate than the log-log 
me thod. 

On the other hand the non-transformed regression gave close 
control at the highest end of the regression which is expected 
since the large numbers control the direction of the regression 

Table XV. Regression Accuracy with Various Transformation 
Treatments of Data. Chlorothalonil Data Set. 

Value of Unknown Amount 

Selected 
Response No Proper Log-Log Hand 
Values Transform Transform Transform Plot 

1.3 -0.21 0.012 0.0094 0.011 
5.0 -0.18 0.038 0.037 0.039 

57. 0.30 0.40 0.44 0.41 
1700. 15.3 15.1 14.2 15.0 
2530 23.0 23.7 21.3 24.5 

Standard Deviation ( a) 0.41 0.022 0.039 
Corr. Coef. Squared 99.7 100. 99.9 

(a) measured in transformed units; thus not directly comparable. 
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162 TRACE RESIDUE ANALYSIS 

Table XVI. Regression Accuracy with Various Transformation 
Treatments of Data. Data set B. 

Value of Unknown Amount 

Selected 
Response No Proper Log-Log Hand 
Values Transform Transform Transform Plot 

0.6 0.24 0.028 0.028 0.025 
2.2 0.28 0.090 0.090 0.093 

30. 0.88 0.93 0.93 1.00 
730 16.0 16.1 16.2 15.7 

1130 24.6 23.7 23.9 23.2 

Standard Deviation ( a) 0.21 0.018 0.029 
Corr. Coef. Squared 99.9 99.9 99.9 

(a) measured in transformed units; thus not directly comparable. 

Table XVII. Regression Accuracy with Various Transformation 
Treatments of Data. Dataset F. 

Value of Unknown Amount 

Selected 
Response No Proper Log-Log Hand 

Values Transform Transform Transform Plot 

1.1 0.083 0.025 0.028 0.025 
4.3 0.16 0.11 0.11 0.11 

20. 0.52 0.53 0.50 0.53 
170. 3.95 4.05 4.19 4.0 
250. 5.78 5.77 6.14 5.7 

Standard Deviation ( a) 0.087 0.0088 0.034 
Corr. Coef. Squared 99.8 100. 99.8 

(a) measured in transformed units; thus no: uirectly comparable. 
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9. KURTZ ET AL. Linear Calibration Graph and Its Confidence Bands 163 

Table XVIII. Regression Accuracy with Various Transformation 
Treatments of Data. Chlorpyrifos Data Set. 

Value of Unknown Amount 

Selected 
Response 
Values 

No 
Transform 

Proper 
Transform 

Log-Log 
Transform 

Hand 
Plot 

0.5 
2.0 

20. 
360. 
540 

-2.8 
-1.0 
19.5 

408. 
614. 

0.51 
1.97 

19.9 
403. 
619. 

0.47 
1.96 

20.6 
394. 
597. 

0.47 
1.95 

20.3 
394. 
610. 

Standard Deviation (a) 5.7 0.012 0.018 
Corr. Coef Squared 99.9 100. 100. 

(a) measured in transformed units; thus not directly comparable. 

line more than small numbers. For the non-transformed data the 
differences with the hand plotting amounted to only -6.1, 6.0, 
1.4, and 0.7%. The proper transformation method gave even better 
differences of only -3.3, 2.2, 1.2, and 1.5%. The log-log 
transformation method gave slightly less accurate differences of 
-13, 3.0, 7.7, and -2.1%. 

Discussion of the Regression Accuracy. The inaccuracies found in 
the above discussion for some data treatments are explained in two 
ways. First , a l l the data sets have some curvature in them, 
either at the top or at the bottom end of the graph. Second, 
least squares estimation puts greater influence on the large 
values for non-transformed data and on small values for data sets 
that have been transformed too much ( i . e . , log-log transformed). 
For non-transformed data the large values have greater influence 
on the line and the precision is best at the top of the curve. On 
the other hand a large error is expected at the bottom of the 
curve. For the log-log transformation the opposite is true since 
the small numbers after transformation have a greater influence. 
The general observation is that the non-transformed method uses 
too weak a transformation and is dramatically in error at the 
trace level. On the other hand the log-log transformation is too 
strong and some error is found at the highest level of amounts. 

If the data had been inherently linear, the estimation at 
either end would have been fairly good with no transformation. 
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164 TRACE RESIDUE ANALYSIS 

However, with improper transformation the calculation of 
confidence bands and amount interval estimates is erroneous 
because of the non-constant variance. 

We note that the use of the R-squared value in determining 
the quality of the regression line is dubious since almost a l l 
regressions using extended range of amounts in chromatographic 
processes wil l have R-squared values close to 100%. The standard 
deviation values for each of these regressions is given in the 
table merely for reference and cannot be compared since the units 
are affected by transformation. 

Conclusions 

The basic shortcoming of statist ical ly determined calibration 
graphs as found in the literature has been the omission of 
confidence bands. When properly constructed, information is 
available about the error in the calibration process and the 
resulting uncertainty in the estimated unknown amounts. 

Although the results described in this paper have been known 
before, the combination of transforming the data to achieve both 
constant variance throughout the range of the standards and to 
provide linearity in the calibration graph reduces the calibration 
problem to the basic setting for which statistical procedures 
exist. We can then apply a statist ical procedure which generates 
error bounds on our estimates with a precisely defined 
in terpre ta tion. 

It remains a problem requiring constant diligence to ensure 
that reported laboratory results are not only accurate, but that 
they are presented with an accurate assessment of their 
uncertainty. We hope this work helps laboratory workers meet this 
goal. 
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10 
Use of Cubic Spline Functions in Solving Calibration 
Problems 

WOLFHARD WEGSCHEIDER 

Institute for Analytical Chemistry, Micro- and Radiochemistry Technical University, 
Technikerstraβe 4, A-8010-Graz, Austria 

The analytical exploitation of the fu l l dynamic range 
of a detection principle invariably encompasses non
-linear portion of the concentration vs. response function. 
The use of cubic spline functions for the description 
of this relationship is discussed after a short introduct
ion to the theoretical principles of spline approxima
tions. 

Typical applications in calibration are reviewed 
and as practical example data from the determination 
of the pesticide fenvalerate by gas chromatography 
with electron capture detection are evaluated. 

N o n - l i n e a r c o n c e n t r a t i o n / r e s p o n s e r e l a t i o n s h i p s a r e a s common 
i n p e s t i c i d e r e s i d u e a n a l y s i s a s i n a n a l y t i c a l c h e m i s t r y 
i n g e n e r a l . A l t h o u g h l i n e a r a p p r o x i m a t i o n s h a v e t r a d i t i o n a l l y 
b e e n h e l p f u l t h e c o m p l e x i t y o f p h y s i c a l p h e n o m e n a i s a p r i m e 
r e a s o n t h a t t h e l i m i t s o f u s e f u l n e s s o f s u c h a n a p p r o x i m a t i o n 
a r e f r e q u e n t l y e x c e e d e d . I n f a c t , i t s h o u l d b e r e g a r d e d 
t h e r u l e r a t h e r t h a n t h e e x c e p t i o n t h a t c a l i b r a t i o n p r o b l e m s 
c a n n o t b e h a n d l e d s a t i s f a c t o r i l y b y l i n e a r r e l a t i o n s h i p s 
p a r t i c u l a r l y a s t h e d y n a m i c r a n g e o f a n a l y t i c a l m e t h o d s i s 
f u l l y e x p l o i t e d . T h i s i s t r u e o f p r i n c i p l e s a s d i v e r s e a s 
a t o m i c a b s o r p t i o n s p e c t r o m e t r y X - r a y f l u o r e s c e n c e s p e c t r o m e 
t r y ( 2 ) , r a d i o i m m u n o a s s a y s ( 3 ) , e l e c t r o n c a p t u r e d e t e c t i o n 
( 4 ) a n d m a n y m o r e . 

One o f t h e s t r a t e g i e s f o r h a n d l i n g n o n - l i n e a r c u r v e s 
i s t h e a m e n d i n g o f t h e l i n e a r f u n c t i o n b y h i g h e r o r d e r t e r m s . 
T h e r e s o r t i n g t o p o l y n o m i a l s o f h i g h e r o r d e r s l e a d s t o s u c c e s s 
o n l y i n t h o s e i n s t a n c e s w h e r e t h e s h a p e c a n r e a s o n a b l y b e 
r e p r e s e n t e d b y p o l y n o m i a l a p p r o x i m a t i o n . O t h e r s t r a t e g i e s 
i n c l u d e p i e c e w i s e f i t t i n g o f l i n e a r f u n c t i o n s o r t h e u s e 
o f a p p r o p r i a t e t r a n s f o r m a t i o n s w i t h t h e a i m o f r e t a i n i n g 

0 0 9 7 - 6 1 5 6 / 8 5 / 0 2 8 4 - 0 1 6 7 S 0 6 . 0 0 / 0 
© 1985 American Chemical Society 
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168 TRACE RESIDUE ANALYSIS 

t h e r e a d i l y a c c e s s i b l e a l g e b r a o f l i n e a r l e a s t s q u a r e s a l 
g o r i t h m s . I n m a n y i n s t a n c e s t h e r e i s . o f c o u r s e , a n o t h e r 
d r i v i n g f o r c e b e h i n d t h e s e a r c h f o r t r a n s f o r m a t i o n s : t h a t 
o f b e t t e r u n d e r s t a n d i n g t h e n a t u r e o f t h e p r o c e s s e s i n v o l v e d . 

I t i s t h e a i m o f t h i s c o n t r i b u t i o n t o r e v i e w t h e p r i n c i p l e s 
o f t h e v e r y f l e x i b l e c u r v e f i t t i n g a p p r o a c h b y c u b i c s p l i n e 
f u n c t i o n s f o r c o n s t r u c t i o n o f c o n c e n t r a t i o n / r e s p o n s e c u r v e s • 
t o d e m o n s t r a t e t h e a p p l i c a b i l i t y o f t h i s m e t h o d o l o g y f o r 
s e v e r a l d a t a s e t s r e l e v a n t i n p e s t i c i d e r e s i d u e a n a l y s i s 
( 5 ) a n d t o m a k e s o m e g e n e r a l r e c o m m e n d a t i o n s f o r t h e u s e 
o F c u b i c s p l i n e f u n c t i o n s i n c a l i b r a t i o n p r o b l e m s b a s e d o n 
e x p e r i e n c e i n t h i s l a b o r a t o r y w i t h r a d i o - i m m u n o a s s a y c u r v e s 
( 6 ) a n d a t o m i c a b s o r p t i o n c u r v e s ( 7 ) . T h e r e a s o n f o r t h e 
t r e m e n d o u s s u c c e s s o f s p l i n e f u n c t i o n s t h a t a l s o l e d t o t h e 
e x p l o r a t i o n o f t h i s p o s s i b i l i t y f o r s o l v i n g c a l i b r a t i o n p r o b l e m s 
c a n b e s u m m a r i z e d a s f o l l o w s ( 8 , p . 1 2 3 ) : 
- O r d i n a r y p o l y n o m i a l s a r e i n a d e q u a t e i n m a n y s i t a t i o n s . 
- M o s t f u n c t i o n s a r i s e f o r t h e e x p e r i m e n t e r f r o m t h e p h y s i c a l 

w o r l d n o t f r o m t h e m a t h e m a t i c a l w o r l d . 
- F u n c t i o n s e x p r e s s i n g p h y s i c a l r e l a t i o n s h i p a r e f r e q u e n t l y 

o f a d i s j o i n t e d o r d i s a s s o c i a t e d n a t u r e ; t h e i r b e h a v i o r 
i n o n e r e g i o n may b e t o t a l l y u n r e l a t e d t o t h e i r b e h a v i o r 
i n a n o t h e r r e g i o n . P o l y n o m i a l s a n d m o s t o t h e r m a t h e m a t i c a l 
f u n c t i o n s h a v e j u s t t h e o p p o s i t e p r o p e r t y . T h e s a m e i s 
n o t t r u e f o r s p l i n e f u n c t i o n s . 

T h e o r y 

We a r e t r y i n g t o d e t e r m i n e t h e c u r v e S , c a l l e d s p l i n e f u n c t i o n , 
w i t h 

S ( x ) = E ( y | x ) V a r S ( x ) = * 2 ( x ) 

w h i c h i s s u f f i c i e n t l y s m o o t h . T h e d a t a a r e 

( x ^ y . . ) , i = 1 , , n 

T h e c u r v e S c o n s i s t s o f p i e c e w i s e p o l y n o m i a l s o f d e g r e e m . 
T h e p i e c e s a r e l i n k e d t o g e t h e r a t t h e e n d o f c e r t a i n i n t e r 
v a l s , t h e e x a c t p o s i t i o n s b e i n g t e r m e d k n o t s . T h e c o e f f i c i e n t s 
f o r e a c h i n t e r v a l a r e c h o s e n s o t h a t t h e f i r s t ( m - 1 ) - d e r i v a 
t i v e s o f t h e f u n c t i o n s a r e i d e n t i c a l a t t h e k n o t s . T h e r e 
s u l t i n g f u n c t i o n i s t h u s c o n t i n u o u s w i t h ( m - 1 ) c o n t i n u o u s 
d e r i v a t i v e s . I n a s e n s e s p l i n e s t h e r e f o r e c a n b e r e g a r d e d 
a s a c o m p r o m i s e b e t w e e n a p o l y g o n a n d a n i n t e r p o l a t i n g p o l y n o m : 
l o w o r d e r p o l y n o m i a l s a r e a s s e m b l e d t o a f u n c t i o n t h a t c a n 
b e d i f f e r e n t i a t e d i n t h e e n t i r e f i t t i n g d o m a i n a s o f t e n a s 
p o s s i b l e . T h i s c o n t r i b u t i o n w i l l o n l y t r e a t c u b i c s p l i n e 
f u n c t i o n s (m = 3 ) w h o s e r e p r e s e n t a t i o n c a n b e g i v e n a s 

y = S(x) = P.(x) = a. + b i X + c . x 2 + d . x 3 ( 1 ) 
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10. WEGSCHEIDER Cubic Spline Functions and Calibration Problems 169 

w h e r e t h e t o t a l c u r v e S ( x ) i s c o m p o s e d o f ( p - 1 ) s e g m e n t s 
P . . ( x ) l e a d i n g t o ( p - 1 ) (m+1) c o e f f i c i e n t s a . , b . , c . , d . ; 
p b e i n g t h e n u m b e r o f k n o t s . T h e c h o i c e o f d e g r e e m=3 i s 
a c o m p r o m i s e b e t w e e n t h e t o o r i g i d m=2 t h a t p e r m i t s o n l y 
t h e f i r s t d e r i v a t i v e t o b e c o n t i n u o u s a t t h e k n o t s a n d h i g h e r 
o r d e r s , m > 3 , t h a t n e e d t h e e s t i m a t i o n o f a n e x c e s s i v e n u m b e r 
o f p a r a m e t e r s w i t h o u t n o t i c e a b l e i m p r o v e m e n t a t t h e k n o t s 
a s t h e c o n t i n u i t y o f h i g h e r o r d e r d e r i v a t i v e s , ( m - l ) > 2 , 
c a n n o t b e s e n s e d b y t h e h u m a n e y e / b r a i n i n t e r f a c e . T h e c h o i c e 
o f t h e n u m b e r a n d p o s i t i o n s o f t h e k n o t s a l o n g w i t h t h e s e l e c t i o n 
o f t h e d e g r e e m o f t h e s p l i n e f u n c t i o n s g i v e s t h e e x p e r i m e n t e r 
a g r e a t f l e x i b i l i t y t h a t h a s b e e n c o m p a r e d t o t h e s e l e c t i o n 
o f f u n c t i o n s t y p e i n o r d i n a r y c u r v e f i t t i n g p r o b l e m s ( 9 ) . 
F o r m a l s t r a t e g i e s ( 8 , 1 0 ) a s w e l l a s h e u r i s t i c a r g u m e n t s ( 9 ) 
a r e g u i d i n g t h e e x p e r i m e n t e r t o w a r d s a u s e f u l s e l e c t i o n 67 
t h e s e p a r a m e t e r s . T h i s f l e x i b i l i t y , h o w e v e r , l e a d s t o a m u l t i t u d e 
o f s o l u t i o n s i n c a l i b r a t i o n t h a t c a n b e a n u i s a n c e i n p r a c t i c e . 
I f e v e r y c a l i b r a t i o n p o i n t ( w i t h t h e e x c e p t i o n o f r e p l i c a t e s 
t h a t c a n b e t r e a t e d b y a v e r a g i n g t h e i r r e s p o n s e v a l u e s ) i s 
t r e a t e d a s a s e p a r a t e k n o t , t w o d i f f e r e n t s i t u a t i o n s c a n 
b e d i s t i n g u i s h e d . I n c a s e o f v e r y p r e c i s e l y d e f i n e d r e s p o n s e 
v a l u e s , y . , o b t a i n e d i n p r a c t i c e b y a h i g h n u m b e r o f r e p l i c a t e s 
i n p r e s e n i e o f s m a l l r a n d o m e r r o r s , i t i s p o s s i b l e t o u s e 
i n t e r p o l a t i n g s p l i n e s . P r e s u m b l y , t h e m o r e f r e q u e n t c a s e 
e n v i s a g e d w i l l b e t h e o n e , w h e r e r e l a t i v e l y f e w d a t a p o i n t s 
w h o s e r a n d o m e r r o r s a r e n o t n e g l i g i b l e a n d / o r t h a t a r e n o t 
h i g h l y r e p l i c a t e d s p a n t h e c o n c e n t r a t i o n ( o r m a s s ) d o m a i n . 
T h i s n e e d s t o b e c o n s i d e r e d i n g r e a t e r d e t a i l . 

C a l i b r a t i o n g r a p h s d e f i n e d b y d a t a w i t h n o n - n e g l i g i b l e 
e r r o r h a v e t o b e c o n s t r u c t e d b y some k i n d o f s m o o t h i n g o p e r a t i o n . 
I n c a s e s , i n w h i c h t h e f o r m o f t h e u n d e r l y i n g c u r v e i s k n o w n 
a p r i o r i , t h e l a t t e r c a n b e a p p r o x i m a t e d b y m i n i m i z i n g t h e 
s q u a r e s o f d e v i a t i o n s . O t h e r w i s e a s p l i n e f u n c t i o n c a n b e 
u s e d 0 1 _ J 2 ) . T h e s p l i n e f u n c t i o n S ( x ) i s c o n s t r u c t e d t o 
m i n i m i z e a m e a s u r e o f s m o o t h n e s s d e f i n e d b y 

among a l l f u n c t i o n s 

n 

rs(xi) -v 
( 3 ) 

i=l 
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170 TRACE RESIDUE ANALYSIS 

8 y . j > 0 aind R > 0 a r e g i v e n n u m b e r s . R e i n s c h ( 1 1 ) s u g g e s t s 
t h a t f o r $ y . ; * <r. n a t u r a l v a l u e s o f R l i e i n t F e c o n f i d e n c e 
i n t e r v a l 

( 2 n ) 1 / 2 £ R £ n + ( 2 n ) 1 / 2 ( 4 ) 

R = 0 l e a d s b a c k t o t h e p r o b l e m o f i n t e r p o l a t i o n b y s p l i n e 
f u n c t i o n s . I t s h o u l d b e n o t e d a t t h i s p o i n t t h a t t h e c o n d i t i o n 
s t a t e d b y e q . ( 4 ) i s n o t s u f f i c i e n t f o r t h e c o n s t r u c t i o n 
o f c a l i b r a t i o n c u r v e s a n d a d d i t i o n a l c o n s i d e r a t i o n s h a v e 
t o t a k e e f f e c t . A r e f o r m u l a t i o n o f t h e p r o b l e m s t a t e d i n 
E q u a t i o n s ( 2 ) a n d ( 3 ) g i v e s u s w i t h 8 y . = 1 f o r a l l i c a l i b r a 
t i o n p o i n t s a n o t h e r l o o k a t t h e p r o b l e m t h a t c l a r i f i e s t h e 
r o l e o f t h e i n t e g r a l i n E q u a t i o n ( 2 ) a s b a l a n c e d a g a i n s t 
a v a l u e o f R . F i n d S ( x ) t o 

i = l x m i n 

2 
d x ( 5 ) 

w h e r e A i s a n o n - n e g a t i v e r e a l n u m b e r . T h e f i r s t t e r m i s 
a m e a s u r e o f f i d e l i t y t o t h e d a t a , a n d t h e s e c o n d t e r m i s 

A t i m e s t h e s m o o t h n e s s o f S . I t i s i m p o r t a n t t h a t f o r e a c h 
A 0 t h e r e e x i s t s a n u n i q u e s o l u t i o n t o S ( x ) ( 1 1 ) . F o r 
A oo , S ( x ) b e c o m e s i n c r e a s i n g l y s m o o t h a n d t f i e l i m i t i n g 

S ( x ) i s a s t r a i g h t l i n e . A s A -> 0 ( e q u i v a l e n t t o R - * 0 ) 
t h e s p l i n e f u n c t i o n S ( x ) p a s s e s t h r o u g h e a c h ( p o s s i b l y r e p l i c a 
t e d ) d a t a p o i n t . C o n s i d e r a b l e r e s e a r c h ( e . g . r e f s . 1 3 - 1 7 ) 
h a s g o n e i n t o c h o o s i n g t h e a p p r o p r i a t e d e g r e e ^ o f s m o o t f i T n g 
f r o m t h e d a t a w i t h o u t k n o w l e d g e o f e r r o r s a. o f t h e d a t a 
y . b y c r o s s v a l i d a t i o n . T h e i n t u i t i v e i d e a o r c r o s s v a l i d a t i o n 
i i q u i t e s i m p l e a n d g o e s a s f o l l o w s ( 1 5 ) : l e t S b e t h e 
s m o o t h i n g s p l i n e w i t h a g i v e n v a l u e o F ^ A c a l c u l a t e d b y u s i n g 
a l l ( n - 1 ) p o i n t s e x c e p t t h e k - t h . T h e g o o d n e s s o f A i s now 
e v a l u a t e d b y p r e d i c t i n g y . b y S . O v e r a l l n v a l u e s t h i s 
g i v e s K n ' 

1 v n * 2 

V o U ) = ; Z[ s kn (V- yk] (6 ) 

T h e c r o s s v a l i d a t i o n e s t i m a t e o f A f o r e q u a l l y s p a c e d d a t a 
i s d e f i n e d t o t h e m i n i m i z e r o f V (A ) ( 1 _ 3 , 1 5 ) . R e s u l t s w e r e 
a l s o g i v e n f o r t h e " g e n e r a l i z e d " ° c r o s s v a T T d a t i o n t o c o m p e n s a t e 
f o r u n e q u a l l y s p a c e d d a t a p o i n t s ( 1 5 - 1 7 ) b u t w i l l n o t b e 
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10. WEGSCHEIDER Cubic Spline Functions and Calibration Problems 171 

d i s c u s s e d h e r e f o r t h e f o l l o w i n g r e a s o n , f o u n d e d i n t h e p a r 
t i c u l a r p r o b l e m t r e a t e d i n t h i s c o n t r i b u t i o n , n a m e l y c a l i 
b r a t i o n : O n l y r a r e l y s u f f i c i e n t n u m b e r o f d a t a a r e a v a i l a b l e 
f o r u s i n g c r o s s v a l i d a t i o n . W a h b a (J8) d o e s n o t r e c o m m e n d 
g e n e r a l i z e d c r o s s v a l i d a t i o n " f o r m u c h f e w e r t h a n 2 0 d a t a 
p o i n t s " . E x c l u d i n g r e p l i c a t e s t h i s n u m b e r i s u s u a l l y u n a v a i l a b l e . 
T h e a p p r o p r i a t e d e g r e e o f s m o o t h i n g h a s t h u s t o b e d e f i n e d 
b y o t h e r r u l e s t h a t a r e a d a p t e d t o t h e p a r t i c u l a r c a l i b r a t i o n 
s i t u a t i o n . T h e v a r i o u s p o s s i b i l i t i e s e x p l o r e d i n l i t e r a t u r e 
a r e now r e v i e w e d . 

P a s t D e v e l o p m e n t a n d P r e s e n t U s e o f C u b i c S p l i n e F u n c t i o n s 
i n C a l i b r a t i o n 

T h e f i r s t a p p l i c a t i o n s i n c a l i b r a t i o n p r o b l e m s a p p e a r t o 
h a v e b e e n i n t h e f i e l d o f c o m p e t i t i v e p r o t e i n b i n d i n g a s s a y s . 
M a r s c h n e r e t a l _ . ( 1 9 ) h a v e i n t r o d u c e d t h e c o n c e p t o f s m o o t h i n g 
s p l i n e f u n c t i o n s ( T T , 1 2 ) t o a l l o w f o r t h e g r e a t v a r i a b i l i t y 
o f r a d i o - i m m u n o a s s a y ~CR"IA) s t a n d a r d c u r v e s . I t i s a d v i s e d 
( 1 9 ) t h a t a t l e a s t d u p l i c a t e s a r e r u n a t e a c h a s s a y l e v e l 

t o a d j u s t t h e r e l a t i v e w e i g h t s 8 y . o f t h e d a t a p o i n t s . 
A l t h o u g h n o f o r m a l l o g i c i s g i v e n t ? i e a l g o r i t h m w a s u s e d 
i n t e r a c t i v e l y a n d i n t e r m e d i a t e a s w e l l a s t h e f i n a l s p l i n e 
c u r v e s w e r e p l o t t e d a f t e r a p p r o p r i a t e a d j u s t m e n t o f R i n 
e q . ( 3 ) . T h i s c h o i c e o f R e i n s c h ' s a p p r o a c h s e e m i n g l y i s 
i n c o n f l i c t w i t h t h e a d v i c e g i v e n b y W o l d ( 9 ) . He r e c o m m e n d s 
t h e m e t h o d o f R e i n s c h i n c a s e s w h e r e 
" ( i ) t h e n u m b e r o f d a t a i s s u f f i c i e n t l y l a r g e , 

( i i ) t h e a c c u r a c y o f t h e o b s e r v e d y - v a l u e s i s f a i r l y w e l l 
k n o w n , 

( i i i ) n o t r a n s f o r m a t i o n o f t h e d a t a i s n e e d e d , 
( I V ) t h e v a l u e s a r e r o u g h l y e q u i d i s t a n t ( x . - x ^ d o e s 

d o e s n o t v a r y w i t h m o r e t h a n - s a y - 5 0 % ) . " 

U p o n c l o s e r e x a m i n a t i o n n o n e o f t h e a b o v e r e q u i r e m e n t s a r e 
r e a l l y m e t : o n e s e l d o m h a s m o r e t h a n 5 - 7 c a l i b r a t i o n p o i n t s 
s p r e a d o v e r t h e x - d o m a i n ; o c c a s i o n a l o u t l i e r s d o o c c u r a n d 
t h e a c c u r a c y e s t i m a t e i s f a r o f f i n t h i s i n s t a n c e : h e t e r o s -
c e d a s c i t y o f t h e d a t a i s c o m m o n p l a c e ; t h e r a n g e o f t h e a n a l y t i c a l 
m e t h o d s a n d t h e v a r i a t i o n o f s e n s i t i v i t y ( e x p r e s s e d a s f i r s t 
d e r i v a t i v e o f t h e r e s p o n s e v s . c o n c e n t r a t i o n g r a p h ) s t r o n g l y 
e n c o u r a g e s t h e a n a l y s t t o c T i o o s e s t a n d a r d s f o r c a l i b r a t i o n 
t h a t a r e u n e v e n l y s p r e a d o v e r t h e x - a x i s ( c o n c e n t r a t i o n , 
m a s s ) w i t h t h e l a r g e r p r o p o r t i o n o f a l l d a t a c r o w d e d a t l o w e r 
x - v a l u e s . I t i s n o t s t r a i g h t f o r w a r d l y j u d g e d w h y t h e u s e 
o f s m o o t h i n g s p l i n e s h a s b e e n s u c c e s s f u l i n s p i t e o f t h e 
f a c t g i v e n . One r e a s o n c o u l d b e t h e o p e r a t o r i n t e r a c t i o n 
t h a t w a s i n h e r e n t i n t h e e a r l y a p p r o a c h e s (19,20) a n d i n t r o d u c e d 
t h e p a s t e x p e r i e n c e o f h u m a n i n t e l l e c t t o s o r t o u t o u t l i e r s 
a n d a d a p t s m o o t h i n g f a c t o r s . A t t h e s a m e t i m e t h i s m u s t a l s o 
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172 TRACE RESIDUE ANALYSIS 

h a v e h e l p e d t o a v o i d d r a w b a c k s o f o v e r f i t t i n g . T h e u s e o f 
B - s p l i n e s w i t h i n s o m e c a s e s j u s t a s i n g l e k n o t w a s a d v o c a t e d 
b y M o s l e y a n d B e v a n ( 2 1 ) . H o w e v e r , t h e p r o b l e m o f how t o 
c h o o s e " c o r r e c t " s m o o t h i n g p a r a m e t e r s i s o n l y s u b s t i t u t e d 
b y t h e p r o b l e m o f c h o o s i n g t h e r i g h t n u m b e r a n d p o s i t i o n ( s ) 
o f t h e k n o t ( s ) . A l t h o u g h n o m e a s u r e s w e r e t a k e n t o a c c o u n t 
f o r t h e v a r y i n g s t a n d a r d d e v i a t i o n , a l o g a r i t h m i c t r a n s f o r m a t i o n 
o f t h e x - v a l u e s s e r v e d g e n e r a l l y t o y i e l d r o u g h l y e q u i d i s t a n t 
k n o t s . A s t h e d e g r e e o f a u t o m a t i o n o f R I A p r o c e d u r e s a d v a n c e d 
t h e t e n d e n c y t o s u b s t i t u t e t h e o p e r a t o r i n t e r a c t i o n b y s o m e 
o b j e c t i v e a n d r e p r o d u c i b l e p r o g r a m l o g i c w a s s t r o n g . T h e 
r e g u l a r i t i e s o f t h e s i g n a l / c o n c e n t r a t i o n d e p e n d e n c e s e r v e d 
a s p i v o t a l p o i n t s f o r t h i s a c c o m p l i s h m e n t : n o e x t r e m e p o i n t s 
a r e g e n e r a l l y f o u n d i n c a l i b r a t i o n , z e r o o r o n e i n f l e c t i o n 
p o i n t i s o b s e r v e d a n d t h e d e p e n d e n c e o f r a n d o m e r r o r s a s 
a f u n c t i o n o f c o n c e n t r a t i o n i s a t l e a s t r o u g h l y k n o w n f r o m 
p r e v i o u s e x p e r i e n c e . T h e s e f a c t s c a n b e u s e d i n a n i n t e r a c t i v e 
p r o c e d u r e t o a d a p t t h e s m o o t h i n g p a r a m e t e r s t o y i e l d t h e 
s m a l l e s t s m o o t h n e s s c o n s i s t e n t w i t h t h e k n o w n o r a s s u m e d 
c h a r a c t e r i s t i c s o f t h e c u r v e . S m o o t h i n g p a r a m e t e r a n d p o s i t i o n 
o f t h e i n f l e c t i o n p o i n t c a n i n t u r n b e u s e d t o d e s c r i b e t h e 
q u a l i t y o f a p a r t i c u l a r r e a l i z a t i o n o f t h e c u r v e ( 2 2 - 2 4 ) . 
I n s p i t e o f t h e g r e a t s u c c e s s o f t h e s p l i n e f u n c t i o n s T o r 
r a d i o - i m m u n o a s s a y s t a n d a r d c u r v e s c a v e a t s a r e v o i c e d p r i m a r i l y 
c o n c e r n i n g t h e c o n s c i e n t i o u s c h o i c e o f t h e s m o o t h i n g p a r a m e t e r s 
( 2 5 ) a n d t h e o v e r f i t t i n g ( 2 6 ) . B o t h a s p e c t s d e s e r v e a t t e n t i o n 
i n o t h e r a p p l i c a t i o n s a s w e T l . 

A n o t h e r a p p l i c a t i o n t h a t i s c l o s e l y r e l a t e d t o t h e p r e s e n t 
p r o b l e m i s t h e c a l i b r a t i o n o f p h o t o g r a p h i c e m u l s i o n s f o r 
a t o m i c e m i s s i o n s p e c t r o c h e m i c a l a n a l y s i s ( 2 7 , 2 8 ) . H e r e t h e 
s p l i n e f u n c t i o n s e r v e s t o d e s c r i b e t h e c o m p l i c a t e d r e l a t i o n s h i p 
b e t w e e n i n c i d e n t i n t e n s i t y a n d c o n s e q u e n t p l a t e b l a c k e n i n g 
f o r w h i c h i n s p i t e o f d e c a d e s o f r e s e a r c h n o f u l l y s a t i s f a c t o r y 
l i n e a r i z a t i o n h a s b e e n w o r k e d o u t . A l t h o u g h n o e x a c t s t r a t e g y 
f o r t h e o p t i m i z a t i o n o f s m o o t h i n g p a r a m e t e r s i s d e s c r i b e d 
i t i s a l s o o p e r a t i o n a l t h r o u g h s u c c e s s i v e i n c r e a s e t o t h e 
p o i n t w h e r e n o t h e o r e t i c a l l y u n j u s t i f i e d " w i g g l e s " a r e l e f t 
i n t h e c u r v e . T h u s , t h e d e g r e e o f s m o o t h i n g i s d e t e r m i n e d 
e m p i r i c a l l y , b u t t h e s m o o t h i n g p a r a m e t e r s a r e a d j u s t e d a u t o 
m a t i c a l l y a n d r e p r o d u c i b l y . E x a m p l e s o f how t h i s g o a l may 
b e a c c o m p l i s h e d a r e g i v e n i n t h e n e x t s e c t i o n . 

W o r k e d E x a m p l e s 

T e s t i n g t h e A c c u r a c y o f a C a l i b r a t i o n S p l i n e F u n c t i o n . O f 
p r i m a r y c o n c e r n i n c a l i b r a t i o n i s t h e f r e e d o m f r o m s y s t e m a t i c 
e r r o r s i n t r o d u c e d b y f i t t i n g t h e w r o n g m o d e l . F o r j u d g i n g 
t h e a c c u r a c y o f t h e c u b i c s p l i n e f u n c t i o n s , i t i s t h e r e f o r e 
d e s i r a b l e t o s t a r t w i t h a c u r v e o f k n o w n s h a p e . P a r t i c u l a r l y 
d i f f i c u l t t o a d a p t b y o r d i n a r y p o l y n o m i a l e x p r e s s i o n s a r e 
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10. WEGSCHEIDER Cubic Spline Functions and Calibration Problems 173 

c u r v e s h a p e s b o u n d e d b y a l i m i t i n g v a l u e . Among t h e s e t h e 
m o d e l f u n c t i o n s e l e c t e d h e r e i s 

1 
y = ( 1 - - ) ( 7 ) 

x 

w h e r e y b e s i g n a l a n d x b e m a s s o r c o n c e n t r a t i o n . T h e s t u d i e d 
r a n g e o f x i s f r o m 1 t o 10 a n d s e v e n s t a n d a r d s a r e p l a c e d 
i n t h i s i n t e r v a l . T h e e x a c t p o s i t i o n o f d a t a a l o n g t h e x 
- a x i s w a s d e t e r m i n e d a r b i t r a r i l y b u t i t w a s r e g a r d e d i m p o r t a n t 
t o h a v e a h i g h e r d e n s i t y o f c a l i b r a t i o n p o i n t s i n t h o s e p a r t s 
o f t h e c a l i b r a t i o n c u r v e w h e r e t h e s l o p e ( s e n s i t i v i t y ) i s 
r e l a t i v e l y h i g h . No n o i s e w a s s u p e r i m p o s e d a s t h e p r i m a r y 
g o a l o f t h i s e x e r c i s e w a s t o f i n d t h e d e g r e e o f c o r r e s p o n d e n c e 
o f t h e t r u e a n d s p l i n e f i t t e d c u r v e b e t w e e n t h e k n o t s . T h e 
s e c o n d p o i n t t h a t c a n b e d e m o n s t r a t e d t h r o u g h t h i s e x a m p l e 
i s t h e i n f l u e n c e o f g r o s s l y m i s p l a c e d o u t l i e r s . T h e r a w d a t a 
a r e g i v e n i n T a b l e I . T h e m i s p l a c e d p o i n t o c c u r s f o r t h e 
v a l u e o f s t a n d a r d 4 . T h e i m p l e m e n t a t i o n o f t h e s m o o t h i n g 

T a b l e I . Raw D a t a f o r a n d E s t i m a t e d R e s p o n s e o f F i t t i n g C u b i c 
S p l i n e s t o t h e F u n c t i o n i n E q u a t i o n ( 7 ) 

n u m b e r o f m a s s o r t r u e f i t t e d s i g n a l ( a . u . ) 
s t a n d a r d c o n c e n  s i g n a l ( a . u . ) w i t h a l l 8 ' y = 1 

t r a t i o n 
s i g n a l ( a . u . ) 

( a . u . ) R = 1 R = 0 . 0 1 

1 1 0 0 . 1 2 3 5 0 . 0 1 3 7 
2 1 . 5 0 . 3 3 3 0 . 2 9 6 1 0 . 3 2 0 6 
3 2 0 . 5 0 . 4 1 4 2 0 . 4 9 5 2 
4 4 0 . 7 5 0 . 6 7 3 9 0 . 7 5 1 7 
5 6 0 . 8 3 3 0 . 8 1 0 1 0 . 8 3 3 1 
6 8 0 . 8 7 5 0 . 9 0 1 8 0 . 8 7 4 9 
7 1 0 0 . 9 0 . 9 7 2 1 0 . 9 0 3 0 

s p l i n e f i t t i n g p r o g r a m i s g i v e n i n r e f . 2 9 . F i r s t , i t i s 
d e m o n s t r a t e d how t h e s m o o t h i n g p a r a m e t e r s R a n d 8 y . ( E q u a t i o n 3 ) 
a f f e c t t h e s h a p e o f t h e s p l i n e f u n c t i o n . F o r c o m p u t a t i o n 
t h e x - a x i s i s t r a n s f o r m e d l o g a r i t h m i c a l l y a n d b a c k t r a n s f o r m e d 
f o r t h e p r o d u c t i o n o f F i g u r e 1 . A s m o o t h i n g p a r a m e t e r o f 
R = 1 ( a n d a l l 8 y . = 1) g i v e s o n l y a v e r y r o u g h a p p r o x i m a t i o n 
w h i l e f o r R = 0 . 0 1 t h e d i f f e r e n c e b e t w e e n t h e t r u e a n d t h e 
c a l c u l a t e d l i n e c a n n o t b e r e p r e s e n t e d g r a p h i c a l l y . I n t e r m e d i a t e 
v a l u e s o f R g i v e c u r v e s t h a t l i e b e t w e e n t h e d o t t e d a n d t h e 
i n t e r r u p t e d l i n e s i n F i g u r e 1 , b u t i t i s c l e a r t h a t a s R -> 0 
t h e s p l i n e w i l l r u n t h r o u g h t h e o r i g i n a l d a t a . 
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174 TRACE RESIDUE ANALYSIS 

I n c a s e o f g r o s s d e v i a t i o n s o f t h e e x p e c t e d c u r v e s h a p e 
i t i s p o s s i b l e t o d i a g n o s e s e g m e n t s o f t h e c u r v e t h a t a r e 
s u s p e c t e d t o b e d o m i n a t e d b y s e v e r l y m i s p l a c e d p o i n t s . A 
l o w r e a d i n g f o r s t a n d a r d 4 ( 0 . 6 5 i n s t e a d o f 0 . 7 5 ) g i v e s a n 
a b n o r m a l s h a p e o f t h e c u r v e b e t w e e n x = 3 . 3 1 a n d x = 4 . 9 5 , 
d e p i c t e d b y t h e d o t t e d l i n e i n F i g u r e 2 . I f t h e n e i g h b o r i n g 
s t a n d a r d s a t x = 3 , 4 a n d 5 a r e g i v e n l o w e r w e i g h t s ( Sy = 
1 0 0 ) b e c a u s e o f t h i s , t h e t r u e s h a p e i s a l m o s t r e s t o r e d a s 
s e e n f r o m t h e b r o k e n l i n e i n F i g u r e 2 . A l t e r n a t i v e l y , a h i g h 
r e a d i n g a t x = 4 ( 0 . 8 5 i n s t e a d o f 0 . 7 5 ) g i v e s a n a n o m a l o u s 
s h a p e o f t h e c u r v e f o r R = 0 . 0 1 a n d a l l Sy^ = 1 i n t h e r a n g e 
o f x f r o m 5 . 9 8 t o 1 0 . T h i s c a n b e s e e n i n F i g u r e 3 f r o m t h e 
d o t t e d l i n e t h a t f l a t t e n s o u t b e y o n d x = 4 i n a n e x t r a o r d i n a r y 
w a y a n d w h o s e f i r s t d e r i v a t i v e i n e f f e c t i n c r e a s e s t o w a r d s 
t h e e n d o f t h e r a n g e . H e r e j u s t t h e p o i n t s a t x = 4 a n d x = 6 
w e r e r e w e i g h t e d w i t h Sy = 10 a n d t h e r e s u l t i n g c u r v e ( F i g u r e 
3 , b r o k e n l i n e ) i s d i s t i n g u i s h a b l e , y e t m u c h c l o s e r t o t h e 
t h e o r e t i c a l c u r v e t h a n i f a l l s t a n d a r d s a r e g i v e n e q u a l w e i g h t s . 
I t i s c l e a r t h a t t h i s r o u g h c h e c k b a s e d o n s h a p e c o n s i d e r a t i o n s 
w o r k s o n l y f o r g r o s s l y m i s p l a c e d p o i n t s . I n p r a c t i c e r e p l i c a t i o n 
w i l l p e r m i t a m o r e p o w e r f u l d e t e c t i o n o f e r r o r s . 

C a l c u l a t i o n o f S p l i n e F u n c t i o n s w i t h P e s t i c i d e GC - E C D D a t a . 
I n c o n s i d e r i n g t h e d a t a f r o m t h e d e t e r m i n a t i o n o f t h e p e s t i c i d e 
f e n v a l e r a t e b y GC - ECD i t i s e v i d e n t t h a t t h e v a r i a n c e i n 
c r e a s e s w i t h m a s s . A l t h o u g h e a c h o f t h e D a t a s e t s p o i n t s t o 
a s o m e w h a t d i f f e r e n t t r a n s f o r m a t i o n (!5) a n e x p o n e n t i a l t r a n s 
f o r m a t i o n w i t h t h e e x p o n e n t b e i n g + 0 . 2 h a s b e e n chosen b y 
s t a n d a r d p r o c e d u r e s ( 3 0 ) a s a c o m p r o m i s e . C o n s i d e r a t i o n s 
d i s c u s s e d i n t h e l a s t s e c t i o n a r e m e t b y l o g a r i t h m i c a l l y 
t r a n s f o r m i n g t h e x - a x i s t o a c h i e v e a c l o s e t o e v e n d i s t r i b u t i o n 
o f p o i n t s . T h e r e s u l t s o f a p p l y i n g t h e c u b i c s p l i n e f i t t i n g 
t o D a t a s e t A a r e s h o w n i n F i g u r e 4 , T h e e n t i r e c u r v e i s s l i g h t l y 
u p w a r d b e n t f o r R = 0 . 0 1 a n d a l l 8 y . = 1 . T h e c h o i c e o f 
t h e s e n u m b e r s a s s u r e s t h a t t h e c u r v e s s a t i s f i e s t w o i m p o r t a n t 
r e q u i r e m e n t s o f c a l i b r a t i o n g r a p h s : ( a ) i t h i t s w i t h i n s t a 
t i s t i c a l l i m i t s ( s . / ^ n T ) t h e i - t h c a l i b r a t i o n p o i n t r e p l i c a t e d 
n t i m e s w i t h standard deviation o f s . ; a n d ( b ) i t s h o w s n o 
u n d u e o s c i l l a t i o n s o r u n e v e n n e s s thai c a n b e o b s e r v e d i f 
t h e s p l i n e f u n c t i o n i s f o r c e d t o r u n e x a c t l y t h r o u g h t h e 
e x p e r i m e n t a l m e a n r e s p o n s e y . . A n o v e r a l l d e c r e a s e o f t h e 
p r e c i s i o n o f t h e m e a s u r e m e n t ^ c a n b e h a n d l e d b y i n c r e a s i n g 
R , a n i m p r o v e m e n t o f p r e c i s i o n b y d e c r e a s i n g R . I n d i v i d u a l 
p o i n t s s h o w i n g g r e a t e r d e v i a t i o n s b e t w e e n r e p l i c a t e s o r f r o m 
t h e " e x p e c t e d " c u r v e c a n b e g i v e n l e s s w e i g h t b y i n c r e a s i n g 
Sy.. F o r D a t a s e t B w i t h R = 0 . 0 1 a n d a l l S y . = 1 t h e c u r v e 

s h o w s t h e s l i g h t l y s i g m o i d a l s h a p e d e p i c t e d i n F i g u r e 5 : 
h e r e a n a d j u s t m e n t o f R a n d / o r s e l e c t e d s y ^ s c o u l d l e a d 
t o a r e m o v a l o f t h e s i g m o i d a l s h a p e i f s o j u s t i f i e d o n t h e o -
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10. WEGSCHEIDER Cubic Spline Functions and Calibration Problems 175 

SIGNAL Ca.u. J 

1.0-

5 10 15 
MASS or CONCENTRATION Ca.u. J 

F i g u r e 1 . G r a p h o f E q u a t i o n ( 7 ) ( f u l l l i n e ) a n d s p l i n e a p p r o x i 
m a t i o n s t o E q u a t i o n ( 7 ) . A l l 8y. = 1 
(R = 1 : b r o k e n l i n e ; R = 0 . 0 1 : d i t t e d l i n e ) 

SIGNAL Ca.u.J 

1.0-

0.5~ 

MASS or CONCENTRATION Ca.u.] 

F i g u r e 2 . S p l i n e a p p r o x i m a t i o n t o E q u a t i o n ( 7 ) w i t h a l o w 
r e a d i n g a t x = 4. 
E q u a t i o n ( 7 ) : f u l l l i n e 
a l l 8 y. = 1 : d o t t e d l i n e 
sy1 =8»y 2 =>y6 = y 7 = i j 
Syo = y^ = 8yr = 1 0 : b r o k e n l i n e 

 P
ub

lic
at

io
n 

D
at

e:
 J

ul
y 

15
, 1

98
5 

| d
oi

: 1
0.

10
21

/b
k-

19
85

-0
28

4.
ch

01
0



176 TRACE RESIDUE ANALYSIS 

SIGNAL Ca.u.] 

1.0-

5 70 /5 
MASS or CONCENTRATION Ca.u.] 

F i g u r e 3. S p l i n e a p p r o x i m a t i o n t o E q u a t i o n (7) w i t h a h i g h 
r e a d i n g a t x = 4 . 
E q u a t i o n (7): f u l l l i n e 
a l l 8y . = 1: d o t t e d l i n e 

sy-i =syz = ? y 3 = sy 6

 = > y 7 = i; 
8y/i = 8yc = 10: b r o k e n l i n e  P
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9004-

10 MASS CngJ 20 

F i g u r e 4 . S p l i n e a p p r o x i m a t i o n t o D a t a s e t A f o r t h e d e t e r m i n a 
t i o n f e n v a l e r a t e b y G C - E C D 
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178 TRACE RESIDUE ANALYSIS 

F i g u r e 5. S p l i n e a p p r o x i m a t i o n t o D a t a s e t B f o r t h e d e t e r m i n a 
t i o n o f f e n v a l e r a t e b y G C - E C D 
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10. WEGSCHEIDER Cubic Spline Functions and Calibration Problems 179 

r e t i c a l o r s t a t i s t i c a l g r o u n d s . N e i t h e r a r e g i v i n g t h i s j u s t i f i 
c a t i o n f o r D a t a s e t B s o t h e p a r a m e t e r s R a n d 8 y . a r e g i v e n 
t h e s a m e v a l u e s a s w i t h p r e v i o u s d a t a s e t s . 

T a b l e I I . S e l e c t e d V a l u e s a n d C o n f i d e n c e B a n d s f o r t h e D e t e r m i n a 
t i o n o f F e n v a l e r a t e E s t i m a t e d b y C u b i c S p l i n e F u n c t i o n s 

D a t a s e t I n t e n s i t y C e n t r a l B o u n d a r i e s o f C o n f i d e n c e B a n d s ( n g ) 
( a . u . ) V a l u e ( n g ) 9 5 % 9 9 % 

l o w e r u p p e r l o w e r u p p e r 

A 1 . 2 0 . 0 5 4 _* 0 . 0 6 5 _* 0 . 0 7 3 
A 3 0 1 . 0 4 0 . 9 5 1 . 1 3 0 . 8 9 1 . 2 0 
A 4 4 0 1 0 . 2 9 . 6 1 0 . 8 9 . 2 1 1 . 2 
A 8 5 0 1 9 . 2 1 8 . 2 2 0 . 3 1 7 . 5 2 1 . 1 

B 1 . 2 0 . 0 5 1 _* 0 . 0 5 7 _* 0 . 0 6 0 
B 2 . 2 0 . 0 8 1 0 . 0 7 2 0 . 0 9 2 0 . 0 6 8 0 . 0 9 7 
B 3 0 1 . 1 3 1 . 0 5 1 . 2 1 1 . 0 2 1 . 2 4 
B 4 6 0 9 . 9 8 9 . 5 1 1 0 . 4 8 9 . 3 4 1 0 . 6 7 
B 7 3 0 1 5 . 7 1 4 . 9 1 6 . 5 1 4 . 7 1 6 . 8 

C 5 . 0 0 . 1 7 3 0 . 1 0 4 0 . 2 6 7 0 . 0 8 4 0 . 3 1 1 
C 3 4 1 . 0 0 0 . 7 6 1 . 2 9 0 . 6 7 1 . 4 2 
C 2 2 7 5 . 0 0 4 . 1 3 6 . 0 0 3 . 8 3 8 . 4 2 
C 5 0 0 1 0 . 1 8 . 5 1 2 . 0 8 . 0 1 2 . 8 
C 1 0 0 0 1 9 . 9 1 6 . 8 2 3 . 5 1 5 . 8 2 5 . 0 

F 2 . 1 0 . 0 5 1 _* 0 . 0 6 0 _* 0 . 0 6 8 
F 4 . 3 0 . 1 0 6 0 . 0 9 0 0 . 1 2 4 0 . 0 7 9 0 . 1 4 1 
F 2 0 0 . 5 4 8 0 . 4 9 1 0 . 6 1 0 0 . 4 4 6 0 . 6 6 5 
F 1 7 0 3 . 9 5 3 . 6 9 4 . 2 2 3 . 4 8 4 . 4 7 

* n o t c o m p u t e d a s t h e v a l u e s a r e 
l y i n g o u t s i d e t h e c a l i b r a t i o n r a n g e 

C o n s t r u c t i o n o f a n A p p r o x i m a t e C o n f i d e n c e I n t e r v a l . A n a p p r o x i -
m a t e c o n f i d e n c e i n t e r v a l c a n b e c o n s t r u c t e d f o r a n a s s u m e d 
c l a s s o f d i s t r i b u t i o n s , i f o n e i s w i l l i n g t o n e g l e c t t h e 
b i a s i n t r o d u c e d b y t h e s p l i n e a p p r o x i m a t i o n . T h i s i s a c c o m p l i s h e d 
b y e s t i m a t i o n o f t h e s t a n d a r d d e v i a t i o n i n t h e t r a n s f o r m e d 
d o m a i n o f y - v a l u e s f r o m t h e r e p l i c a t e s . T h e d e g r e e s o f f r e e d o m 
f o r t h i s p r o c e d u r e i s t h e n d i m i n i s h e d b y o n e a c c o u n t i n g f o r 
t h e e m p i r i c a l s e a r c h f o r t h e p r o p e r t r a n s f o r m a t i o n . I f o n e 
a c c e p t s t h a t t h e d i s t r i b u t i o n o f d a t a c a n b e a p p r o x i m a t e d 
b y a n o r m a l d i s t r i b u t i o n t h e S t u d e n t t - d i s t r i b u t i o n g i v e s 

 P
ub

lic
at

io
n 

D
at

e:
 J

ul
y 

15
, 1

98
5 

| d
oi

: 1
0.

10
21

/b
k-

19
85

-0
28

4.
ch

01
0



180 TRACE RESIDUE ANALYSIS 

t h e c o n f i d e n c e b a n d s r e q u i r e d . I n s e r t i n g t h e s e v a l u e s i n t o 
t h e s p l i n e f u n c t i o n g i v e s t h e c o n f i d e n c e b a n d s i n T a b l e I I . 

C o n c l u s i o n s 

I n t e r p o l a t i n g s p l i n e f u n c t i o n s a r e w e l l a d a p t a b l e t o n o n - l i n e a r 
r e s p o n s e / c o n c e n t r a t i o n d a t a . T o g u a r d a g a i n s t t h e m i s g i v i n g s 
o f o v e r f i t t i n g , c h e c k s f o r t h e a p p r o p r i a t e n e s s o f t h e c u r v e 
s h a p e h a v e t o b e i n c o r p o r a t e d i n t o t h e c o m p u t e r r o u t i n e s 
t h a t i t e r a t i v e l y r e w e i g h d a t a p o i n t s i n t h e n e i g h b o u r h o o d 
o f s u s p e c t e d o u t l i e r s c a u s i n g t h e s h a p e a n o m a l i e s . T h e r e s u l t i n g 
c u r v e i s t h e l e a s t s m o o t h a p p r o x i m a t i o n c o n s i s t e n t w i t h t h e 
a n t i c i p a t e d c u r v e s h a p e i n t e r m s o f i t s f i r s t a n d s e c o n d 
d e r i v a t i v e s . T h e p a r t i c u l a r r e q u i r e m e n t s v a r y a c c o r d i n g t o 
t h e d e t e c t i o n p r i n c i p l e , b u t a r e f r e q u e n t l y k n o w n f r o m p a s t 
e x p e r i e n c e . T h e h a n d l i n g o f d a t a f r o m t h e d e t e r m i n a t i o n o f 
f e n v a l e r a t e i s p e r f o r m e d q u i c k l y a n d r e l i a b l y . 
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11 
Comparison of Calibration Graph Amount and 
Estimated Amount Intervals 
Calculated from Three Research Methods 

DAVID A. KURTZ 

Pesticide Research Laboratory, Department of Entomology, The Pennsylvania State 
University, University Park, PA 16802 

Differences in ca l i b r a t i o n graph results were found 
in amount and amount interval estimations in the use 
of three common data sets of the chemical pesticide 
fenvalerate by the individual methods of three 
researchers. Differences in the methods included 
constant variance treatments by weighting or 
transforming response values. Linear single and 
multiple curve functions and cubic spline functions 
were used to fit the data. Amount differences were 
found between three hand plotted methods and between 
the hand plotted and three d i f f e r e n t statistical 
regression line methods. Significant differences i n 
the calculated amount interval estimates were found 
with the cubic spline function due to its limited 
scope of inference. Smaller differences were 
produced by the use of local versus global variance 
estimators and a simple Bonferroni adjustment. 

One of the opportunities that researchers rarely have is to be in 
a position of a direct comparison of methods used by several 
researchers that use the same data. Three of the fenvalerate 
"unknown" Datasets described and used elsewhere in this volume 
have been used as primary datasets by 3 research groups in the 
solution of the cali b r a t i o n problem. Two aspects of the 
calib r a t i o n problem, namely, the accuracy of the calib r a t i o n graph 
and the description of s t a t i s t i c a l error as shown by the estimated 
amount interval are examined here in comparing each of the 
cali b r a t i o n methods. 

The methods used were those of Mitchell ( 1 ), Kurtz, 
Rosenberger, and Tamayo ( 2 ), and Wegscheider )• Mitchell 
accounted for heteroscedastic error variance by using weighted 
least squares regression. Mitchell f i t t e d a curve either to a l l 
or part of the calib r a t i o n range, using either a linear or a 
quadratic model. Kurtz, et a l . , achieved constant variance by a 

0097-6156/85/0284-0183$06.00/0 
© 1985 American Chemical Society 
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184 TRACE RESIDUE ANALYSIS 

power transformation and considered only a linear model in this 
work. Wegscheider used a logarithmic transform to achieve 
constant variance and used a cubic spline function to f i t the 
response standard means. Each of the methods has its purpose and 
its limitations. In this comparison the reader wil l be able to 
ascertain the effect on the calculated data when treated by each 
of these three methods. 

Data Description 

Fenvalerate "unknown" data sets were used as examples in this 
study. See Appendix A for the complete l isting of the data. 
Table I summarizes a description of the data sets. Datasets A and 
B are both quality sets of the same amount range, 0.05 to 20 ng, 
but Dataset A has only 2 replications/level while B has 5. 
Dataset F has two replications/level and a much shorter range, 
0.05 to 5 ng. Dataset A is barely linear at 95% level while 
Dataset B shows curvature. Dataset F is an example of reasonably 
good linear data with a minimum of range and data points. 

Table I. Description of Data Sets Studied. 

Dataset Samples Levels Amount Linear Standard 
Number Number Range Prob. Deviation 

Level(a) (a) 

A 10 5 0.05-20. .05 0.016 

B 25 5 0.05-20. .00 0.018 

F 8 4 0.05- 5. .30 0.009 

(a) for transformed data. 

Model Description 

In Mitchell^s work unequal variance of the response data was 
compensated for by weighting the data by the variance at each 
level. The regression parameters and the confidence band around 
the regression line were estimated by least squares ( 4̂  ) . The 
overall level of uncertainty, a , was divided between the 
variation in response values and the variance in the regression 
estimation. His overall a was 0.05. The prediction interval was 
estimated around a single response determination. 
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11. KURTZ Calibration Graph Amount and Estimated Amount Intervals 185 

Mitchell^s computer program f irst applied the method to a 
linear model and then calculated the amount values corresponding 
to response values of unknowns and the accompanying estimated 
amount interval . . . calculated as a bandwidth. Bandwidth was 
defined as the percentage of half the difference of the upper and 
lower values of the estimated amount interval divided by thex 
corresponding amount. The standards data was then shortened at 
the ends, always in such a way to maintain unknowns within the 
range, and the bandwidth recalculated. Narrower bandwidths were 
often found in this way. The method also allowed a further 
recalculation using a second order function model. 

The method described by Kurtz, et a l . , ( 2_ ) differs from the 
method described by Mitchell ( 1 ) in several minor respects. 
Kurtz, et a l . , used a power series transformation to stabilize the 
variance and to linearize the response. This approach can also be 
extended to include models with higher order terms. The 
prediction interval for a response was determined from standard 
normal statistics, making the assumption that a very large number 
of responses may be estimated from one calibration graph. The 
prediction interval around the average of a large number of 
responses wil l be narrower than the band around a single response. 
The overall a of 0.05 was spl i t between the response variance and 
the variance in the regression estimation. 

Wegscheider fitted a cubic spline function to the 
logarithmically transformed sample means of each level. This 
method obviates any lack of f i t , and so i t is not possible to 
calculate a confidence band about the fitted curve. Instead, the 
variance in response was estimated from the deviations of the 
calibration standards from their means at an a of 0.05. The 
intersection of this response interval with the fitted calibration 
line determined the estimated amount interval. 

The Kurtz and Mitchell approaches both result in an amount 
interval which comes from the intersection of two confidence 
intervals: the confidence interval about the response and the 
confidence interval about the regression line. The Wegscheider 
approach will yield a narrower band, since the band is determined 
from the intersection of the response interval with the regression 
line i tse l f . The three methods would be more directly comparable 
i f there were a way to calculate a confidence band around the 
spline f i t . 

At any rate the practitioner must follow a two-step process 
in setting up a calibration graph: 1. Stabilize the response 
variance across the range needed and 2. choose an appropriate 
calculation function model. The response data is stabilized 
currently in two ways, either by weighting on a level-by-level 
basis or by applying some transformation function in the same 
manner to a l l the response values. The model chosen must approxi
mate the data. It can be that a simple linear (as shown by a 
statist ical test) function can serve this purpose adequately. The 
use of Mitchell^s multiple linear function has been successfully 
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186 TRACE RESIDUE ANALYSIS 

used by the author when the data have a slight curvature in them* 
For data that does not conform well, a higher order model or an 
alternate method should be chosen. Generally, then, the 
practitioner should attempt to find some functional relationship 
between the compound sought, such as the fenvalerate studied here, 
and the readings on an instrument, such as a gas chromatograph. 
The relationship takes into account that the day-to-day samples 
determined are subject to error from several sources: random 
error , instrument error, observer error, preparation error, etc. 
This view is the basis of the process of f itt ing data to a model, 
which results in confidence intervals based on the intrinsic lack 
of f i t and the random variation in the data. 

Results 

Hand plotting of data. From the author^s experience in 
calculating the data for this work, i t is very dif f icult to 
determine what is the true or most accurate estimation of the 
calibration graph. If hand plotting of the mean response at each 
amount level is used, various estimations of unknown points can be 
made depending on the methods used in plotting. Table II shows 
amount estimations for various unknown response points using 
Datasets A, B, and F when the data is plotted by three different 
methods. Normally, analysts use simple rectangular coordinates. 
To compile the data for this table with rectangular coordinates 
the plotting was done in two scales, the lower values of responses 
from 1 to 45 response area units and the overall scale for 
responses greater than 45 area units. For extended range data, 
however, analysts often use log-log coordinates. Data was thus 
obtained using this method. Because difficulties were seen in 
either of these methods, the response versus amount values were 
plotted after they had been independently transformed as found in 
Kurtz^ work ( 2_ ). Data from the use of a l l of these plotting 
methods are shown in the table. 

The various plotting methods showed differences between them. 
For Dataset A either the transformed plot was low at the low end 
or the other two plots were high at the low end. Furthermore the 
log-log plot appeared to be low at the high end as compared with 
the other plotting methods. With Dataset B the log-log plot ap
peared to be low at the high end. In Dataset F a l l three types of 
plots gave similar amount values for the unknown responses l isted. 

The main problem in plotting occurs in deciding where the 
line should be placed when there is point scatter. A secondary 
problem happens when the data has curvature and a curved line is 
needed to describe the points. While the human mind can sense 
relationships in plotting pretty well, there is diff iculty in 
estimating the proper plot position for these reasons. While two 
of the data sets , A and F, are linear, corresponding to the lack 
f i t test at 95% probability, a l l of the sets show curvature in 
log-log and rectangular coordinates. 
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11. KURTZ Calibration Graph Amount and Estimated Amount Intervals 187 

Table II* Estimated Amounts at Various Responses for Three 
Regression Methods Using Datasets A, B, and F as Standards 

and compared to Plotted Data. 

Mitchell Kurtz, Weg-
et a l . scheider 

Dataset A (overall amount range is 0.05 to 20 ng) 

1.1 0.051 0.050(L) 0.053 0.050 0.046 0.050 
1.2 (a) 0.057 0.054 0.054 0.050 0.054 

48.6 1.52 1.57 1.49 1.58 
223 6.4 5.4 (H) 5.9 5.6 5.8 5.6 
440 10.7 10.2 10.3 10.4 9.6 
883 19.6 20.5 (H) 19.8 20.0 19.6 18.0 

Dataset B (overall amount range is 0.05 to 20 ng) 

0.6 0.33 0.31 (L) 0.028 0.025 0.026 0.025 
1.1 0.048 0.047(L) 0.050 0.046 0.046 0.047 
1.2 0.052 0.051 0.050 0.050 0.051 
2.2 0.082 0.084(L) 0.090 0.081 0.090 0.089 0.90 

30 0.92 0.99 (L) 0.93 1.13 1.01 0.97 0.99 
234 6.3 5.4 (H) 5.8 5.5 6.0 5.9 
460 10.7 10.0 10.3 10.7 10.6 
730 16.4 16.2 (H) 16.1 15.7 16.0 16.0 15.7 
920 19.6 20.3 (H) 20.0 20.0 19.8 19.2 

1130 22.8 24.9 (H) 23.7 23.5 23.5 23.2 

Dataset F (overall amount range is 0.05 to 5 ng) 

1.1 0.023 0.024(L) 0.025 0.027 0.025 0.025 
2.1 0.051 0.05KL) 0.050 0.051 0.052 0.051 0.052 
4.3 0.111 0.110(L) 0.111 0.106 0.113 0.112 0.110 

20 0.54 same 0.53 0.55 0.54 0.53 0.53 
66.3 1.18 same 1.68 1.70 1.68 1.68 

170 4.1 same 4.1 4.0 4.0 4.0 4.0 
217 5.0 same 5.0 5.0 5.0 5.0 
250 5.7 same 5.8 5.7 5.7 5.7 

(a) (L) is low range of 0.05-1 ng and (H) is high range of 1-20 ng 
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188 TRACE RESIDUE ANALYSIS 

This part of the discussion is closed with the raising of a 
question. Is there an inherent truth that plotting itself should 
be done with respect to maintaining constant variance across the 
graph? The requirement of constant variance is invoked by 
statisticians when performing confidence band calculations. Thus, 
is i t also a necessity in plotting the points themselves? 

Differences in Estimated Amounts Determined from Three Methods. 
Treatments of the data were compared at three points for Dataset A 
and 8 points each for Datasets B and F. While the points taken 
were actually points of the standards themselves, the described 
points should be thought of as unknown response points for 
analysis. 

No data sets appear to conform to any of the hand plotted 
lines completely. 

Of a l l of the three methods, Kurtz' calculations appear to be 
the closest to its corresponding plot, the transformation plot. 
For these calculations only the lowest two points in both Datasets 
A and B appear to be greater than 4% different from the plotting 
of transformed data. These could even have been a result of 
slightly inappropriate plotting. The entire Dataset F falls quite 
closely to the plot. 

For Wegscheider's calculations the amount 10.2 in Dataset A 
appears to be a l i t t l e high when compared with the log-log plot 
but very close to the other estimations. For Dataset B the 0.081 
value appears to be 10% lower than the plotting figures and, 
strangely, similar to Mitchell's single curve amount. At the same 
time the 1.13 amount appears to be 13% higher than the 
corresponding plotted amounts; i t is even 12% high when compared 
to the mean of the original data points, 1.01, for that response 
level taken. (Adjusting a mean of 29.68 response units to 30.0 
with a corresponding adjustment of amount from 1.00 to 1.01.). 
A l l the points for Dataset F are quite close to a l l other amount 
estimates shown. 

Mitchell has scattered points that do not conform to plotted 
data. It was uncertain which plot should have been used to 
compare to; therefore the general consensus of a l l three was taken 
in this comparison and only obvious differences noted. For the 
single curve method the 6.4 amount in A was different from the 
plot. In B the 0.33, 0.082, 0.92, and 6.3 points were different. 
In F the 0.023 point was different and the 1.18 point appears to 
be in error. There was an improvement in precision when the 
multiple curve method was used. In A a l l three points conform. 
In B only the extreme points 0.31 and 24.9 do not appear to be 
similar. There were essentially no differences in F, save for the 
erroneous 1.18 point, over the single curve method. 

The ultimate conclusion as to the method to be used for 
calibration graph usage is f i rs t to select the best calibration 
function. This may be linear or of higher order. Such a model 
must take into consideration instrumental and operator effects 
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11. KURTZ Calibration Graph Amount and Estimated Amount Intervals 189 

which can be different at the ends of the calibration graph and 
indeed even in the middle. Whatever the function, i t should 
reflect the real points. Then the response is transformed for 
constant variance and the amount is transformed for conformity to 
the proposed model. Other graphing methods may be chosen to more 
closely f i t the data. Finally statistical methods are chosen to 
provide information about the error of the process. 

Discussion on Model Selection for Accuracy. The model selection 
has a great deal to do with the calibration accuracy. We have 
seen that some data sets can give close results regardless of the 
model or statist ical method chosen. For example, Data set F data 
were very close to being linear. The set tested, with power 
transformed data, to show no evidence of lack of f i t at the 30% 
level with very l i t t l e overall response dispersion. In this case 
a l l methods of a l l authors closely agreed at a l l calculation 
levels. Agreement was also obtained between a l l plotting methods 
and between the plotting and statistical methods. In the cases of 
Datasets A and B, both sets showed some curvature. With 
transformed data, Dataset A did not show evidence for lack of f i t 
to the linear model at the 5% level and Dataset B did show 
evidence of lack of f i t even at the 1% level. In both these cases 
we have found differences in accuracy between the methods that 
utilized linear models and even with the cubic function. The 
practitioner must verify the closeness of f i t of the data to his 
chosen model before proceeding to use his function. 

Estimated Amount Interval and Bandwidth Data. The bandwidths for 
each of the points compared were calculated from Wegscheider's 
data. They were markedly smaller than those calculated by either 
of the other two workers. His bandwidths ranged from 4.9 to 16.0% 
for a l l of the three data sets. Refer to Table III. 

The data of Mitchell and Kurtz, et a l . are very similar as 
compared both at given responses and across the whole range of 
responses. For Mitchell's single curve results the bandwidths 
ranged from 75 to 23% at the lowest response levels for the 3 data 
sets. Note that the table contains bandwidth data at responses 
both higher and lower than the range of standards for Datasets B 
and F; these extrapolated data are not analytically appropriate 
but were included to test the characteristics of the methods 
tested. Kurtz' ranged from 54 to 37% for the same level. At the 
top of the standards range, the bandwidths for Mitchell ranged 
from 39 to 17% and Kurtz' ranged somewhat lower, 20 to 14%. 
Mitchell's multiple curve method improved his bandwidth data 
considerably. In shortening the range of standards he has halved 
the bandwidths in Dataset A and achieved a half to one third 
reduction in Dataset B. Lit t le improvement was found in 
considering multiple curves for Dataset F since this set is quite 
linear. 
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190 TRACE RESIDUE ANALYSIS 

Table I I I . Estimated Amount Bandwidths at Various Responses for 
Three Regression Methods Using Datasets A, B, and F as Standards. 

Amount Bandwidth, % 

M i t c h e l l Weg-
Kurtz, et a l . scheider 

Amount 
Response Estimate Single M u l t i p l e 

Da taset A ( o v e r a l l amount range i s 0.05 to 20 ng) 

1.1 0.05 75% 37% (L) 54% -(a 
223 44 17 (H) 22% -440 - - 21 5.9 
883 20.0 39 18 (H) 20 -

Da taset B ( o v e r a l l amount range i s 0. 05 to 20 ng) 

0.6 60 38 (L) 44 -
1.1 0.05 40 24 (L) 39 -2.2 34 20 (L) 35 12.3 

30 1.00 33 17 (L) 22 7.1 
234 25 7 (H) 16 -460 - - 15 4.9 
730 21 7 (H) 15 4.9 
920 20.0 20 7 (H) 14 -1130 37(b) 6 (H) 14 -
Da taset F ( o v e r a l l amount range i s 0. 05 to 5 ng) 

1.1 56 51 (L) 44 _ 

2.1 0.05 23 23 (L) 37 -4.3 20 20 (L) 30 16.0 
20 20 20 same 21 10.9 
66.3 18 18 same 17 -170 17 17 same 16 6.7 
217 5.00 17 17 same 16 -250 18 18 same 16 -

(a) (L) i s low range of 0.05-1 ng and (H) i s high range of 1-20 ng 
(b) appears to be i n e r r o r ; probably should be 17%. 
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11. KURTZ Calibration Graph Amount and Estimated Amount Intervals 191 

The gradual shortening of the bandwidth from the lower end of 
the standards to the upper end is normal due to the definition of 
this quantity. From Figure 2 of Chapter 8 of this volume ( 2̂  ) 
both the confidence band and the response interval are seen to be 
similar in size across the total calibration range. This quantity 
is then divided by the absolute calculated amount which is small 
at the lower end giving relatively high bandwidths when compared 
to the division of a large amount at the high end. 

Discussion of Bandwidth Comparisons. The narrowest bandwidths 
found were those by Wegscheider. With the exception of the high 
end of Dataset B in Mitchell's multiple curve calculation 
Wegscheider's calculated bandwidths were one half to one third 
those of the others. Several reasons could explain this effect: 

First , amount error estimations in Wegscheider's work were 
the result of only the response uncertainty with no regression 
(confidence band) uncertainty about the spline. His spline 
function knots were found from the means of the individual values 
at each level. Hence the spline exactly followed the points and 
there was no lack of f i t in this method. Confidence intervals 
around spline functions have not been calculated in the past but 
are currently being explored ( 5 ). 

When I calculated the estimated amount interval from only the 
response dispersion for the data using Kurtz' methods, there was a 
substantial reduction in the amount bandwidth from the total 
bandwidth. This calculation was done by intersecting the bounds 
of the response dispersion with the linear regressed line and 
projecting these points to the amount axis. This reduction, 
however, was not nearly enough to account for differences from 
Wegscheider's calculation to the others. In Table IV the data is 

Table IV. Comparison of Overall and Response Dispersion portions 
of Amount Bandwidths of the Transformed Method (Kurtz, et al . ) 

with Bandwidths of the Spline Method (Wegscheider) for Dataset B. 

Kurtz, et al • 9 Amount Wegscheider Amount 

Response 
Calc. 

Amount 

Total Response 
Bandwidth Dispersion 

Range Portion 

Amount 
Calc. Bandwidth 

Amount Range 

2.2 
30. 

730. 

0.090 
0.93 

16.1 

35% 
22 
15 

26% 
18 
10.8 

0.081 
1.13 

15.7 

12.3% 
7.1 
4.9 

 P
ub

lic
at

io
n 

D
at

e:
 J

ul
y 

15
, 1

98
5 

| d
oi

: 1
0.

10
21

/b
k-

19
85

-0
28

4.
ch

01
1



192 TRACE RESIDUE ANALYSIS 

Table V. Comparison of Overall and Response Dispersion portions 
of Amount Ranges (in ng) of the Transformed Method (Kurtz, et al . ) 

with Ranges of the Spline Method (Wegscheider) for Dataset B. 

Kurtz, et a l . , Amount Wegscheider Amount 

Total Response 
Re Calc. Est. Amount Dispersion Calc. Est. Amount 

sponse Amount Range Portion Amount Range 

2.2 0.090 0.063- 0.125 0.064- 0.112 0.081 0.072- 0.092 
30. 0.93 0.75 - 1.15 0.79 - 1.13 1.13 1.05 - 1.21 

730. 16.1 13.9 -18.6 14.2 -17.7 15.7 14.9 -16.5 

shown for Dataset B. At 2.2 response units Kurtz' overall amount 
bandwidth of 35% has a contribution of 26% from the response 
dispersion. This 26% is considerably larger than Wegscheider's 
calculation of 12.3%. At 30 response units the response 
dispersion contribution from Kurtz' work was 18% which is also 
higher when compared to Wegscheider's calculation of 7.1%. At 730 
response units the difference between the two quantities has been 
narrowed to about half that of Kurtz'. 

Table V includes the same comparison as Table IV between 
Kurtz' transformed method and Wegscheider's spline method for 
Dataset B and shows the actual amount units. It gives the reader 
a clear idea of the actual sizes of estimated amount ranges 
resulting from the uncertainty in response data. 

The substantial differences, when comparing response 
dispersion alone, may be explained in two additional ways. The 
f irs t involves the size of the uncertainty when using the 
Bonferroni inference. Kurtz, et a l . , and Mitchell use a 
Bonferroni inference which splits the uncertainty in the 
regression between the regression and the response portions. 
Instead of a 95% probability there is a 97.5% probability for each 
portion. The contribution to the uncertainty for a higher 
probability thus has increased the width of the response 
uncertainty band. 

A second reason is that the use of local variance versus 
global variance can result in markedly different bands. The 
separate calculations of variance at levels throughout the range 
of standards produces a wider confidence interval at lower values 
as seen in Kurtz' method. If a common variance is used as the 
variance estimate then a lower confidence interval is calculated 
at each point as is probably the case in Wegscheider's method. 
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11. KURTZ Calibration Graph Amount and Estimated Amount Intervals 193 

It is not the purpose of this paper at this moment to 
investigate further for more detailed reasons for discrepancies in 
confidence bands or estimated amount intervals. That wil l be 
investigated fully at a later time. I do wish to point out that 
the assumptions one makes about the information he has and the 
statistical approaches he makes profoundly affect the resultant 
error calculations. Far from being a staid and dormant subject 
matter, statistical estimations of error are currently very 
actively being studied in order for scientific workers and 
citizens alike to be informed about the error in their work. 
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12 
Application of Soft Independent Method 
of Class Analogy (SIMCA) in Isomer Specific 
Analysis of Polychlorinated Biphenyls 

D. L. STALLING1, W. J. DUNN III2, T. R. SCHWARTZ1, J. W. HOGAN1, J. D. PETTY1, 
E. JOHANSSON3, and S. WOLD3 

1Columbia National Fisheries Research Laboratory, U.S. Fish and Wildlife Service, 
Columbia, MO 65201 

2University of Illinois Medical Center, Chicago, IL 60608 
3Department of Organic Chemistry, University of Umea, Umea, Sweden 

A p r i n c i p a l components mu l t iva r i a t e statistical 
approach (SIMCA) was evaluated and applied to 
interpretation of isomer specific analysis of poly-
chlorinated b ipheny l s (PCBs) us ing both a 
microcomputer and a main frame computer. 
Capillary column gas chromatography was employed 
for separation and detection of 69 i n d i v i d u a l PCB 
isomers. Computer programs were written in ANSII 
MUMPS to provide a laboratory data base for data 
manipulation. This data base greatly assisted the 
analysts i n ca l cu l a t ing isomer concentrations and 
data management. Applications of SIMCA for quality 
con t ro l , classification, and est imat ion of the 
composition of multi-Aroclor mixtures are described 
for characterization and study of complex 
environmental residues. 

P o l y c h l o r i n a t e d b i p h e n y l s (PCBs) are a c l a s s of s y n t h e t i c 
chlorinated compounds with a t o t a l of 10 possible positions f o r 
chlorine attachment and 209 possible isomers, although the number 
of c o n s t i t u e n t s observed i n t e c h n i c a l f o r m u l a t i o n s i s much 
s m a l l e r (1.-3)• PCBs have been produced by s e v e r a l i n d u s t r i e s 
worldwide i n the form of technical formulations (4). Most PCBs 
produced i n the U.S. o r i g i n a t e d as one of s e v e r a l products 
designated as Aroclors and were p r e v i o u s l y manufactured by the 
Monsanto Chemical Company (5). The major Aroclors produced were 
designated A r o c l o r s 1242,1248,1254, and 1260, where the l a s t 
two d i g i t s designate the percentage of chlorine by weight i n the 
material. Each Aroclor i s characterized by a somewhat d i f f e r e n t 
d i s t r i b u t i o n of c o n s t i t u e n t s having a c h a r a c t e r i s t i c chromato
graphic p r o f i l e of about 70 to 100 chromatographic peaks (1_,3). 

After PCBs were i d e n t i f i e d i n 1966 as pollutants i n f i s h and 
w i l d l i f e (6), they were soon recognized as g l o b a l p o l l u t a n t s 

0097-6156/85/0284-0195S11.00/0 
© 1985 American Chemical Society 
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196 TRACE RESIDUE ANALYSIS 

widely d i s t r i b u t e d i n the biosphere and i n tissues of most forms 
of l i f e , i n c l u d i n g man (7-13). Concern about the occurrence of 
PCBs i n the e n v i r o n m e n t c e n t e r s on t h e i r p e r s i s t e n c e , 
bioaccumulaton i n organisms and t o x i c i t y (14, 15). 

Of a d d i t i o n a l concern i s the thermal c o n v e r s i o n of PCBs to 
p o l y c h l o r i n a t e d dibenzofurans, e s p e c i a l l y when P C B — f i l l e d 
e l e c t r i c a l transformers are involved (16). Further, PCB isomers 
with no chlorine atoms substituted i n the ortho, ortho'-biphenyl 
positions are p a r t i c u l a r l y potent as inducers of a r y l hydrocarbon 
hydroxylase a c t i v i t y . The potency of c e r t a i n dibenzofurans and 
non-ortho, ortho 1 chlorine substituted PCBs i n inducing a c t i v i t y 
of these enzymes i s s i m i l a r to that of the highly t o x i c 2,3,7,8-
tetrachloro-dibenzo-j>-dioxin (15, 17, 18). 

Residues of PCBs e x i s t as complex m i x t u r e s i n almost every 
segment of the environment, and c h a r a c t e r i z a t i o n of these 
residues poses a d i f f i c u l t challenge to the analyst. Routinely, 
PCBs have been q u a n t i t a t e d by comparing s e l e c t e d peak areas 
observed i n samples with those i n one of several Aroclor mixtures 
(19, 20). Packed column gas chromatography has usually been used 
i n these a n a l y s e s , even though t h i s technique p r o v i d e s poor 
r e s o l u t i o n of i n d i v i d u a l isomers and congener groups (21). The 
problems associated with characterizing metabolically a l t e r e d or 
weathered PCBs i s a formidable task that requires an a n a l y t i c a l 
approach with enhanced resolution. 

Both the degree and p o s i t i o n of chlorine s u b s t i t u t i o n on the 
biphenyl rings influence the physical-chemical and t o x i c o l o g i c a l 
behavior of the i n d i v i d u a l PCB constituents (15). When PCBs are 
released into the environment, the o r i g i n a l isomer d i s t r i b u t i o n 
p a t t e r n of any PCB f o r m u l a t i o n may be a l t e r e d as a r e s u l t of 
s p e c i f i c i n t e r a c t i o n s with the environment (14, 22, 23). 

Furt h e r c o m p l i c a t i o n s are encountered i n d e s c r i b i n g the 
r e s i d u e p r o f i l e s when more than one A r o c l o r m i x t u r e i s 
encountered i n an ecosystem. Thus, i t i s important to consider 
not only the t o t a l PCB c o n c e n t r a t i o n i n a sample, but a l s o to 
characterize the d i s t r i b u t i o n of i n d i v i d u a l PCB isomers present 
i n a sample. 

Because information defining the d i s t r i b u t i o n of the various 
PCB isomers among the compartments of l o t i c aquatic ecosystems 
(streams) i s l i m i t e d , the Columbia National Fisheries Research 
Laboratory began a de t a i l e d analysis of the d i s t r i b u t i o n of PCBs 
i n a segment of the mainstream and of a pool of the Upper 
M i s s i s s i p p i River. The objectives of t h i s study were to model 
and understand the h y d r o l o g i c a l and b i o l o g i c a l d i s t r i b u t i o n of 
PCBs, and to aid i n assessing the environmental dynamics of PCBs 
i n the Upper M i s s i s s i p p i River. E c o l o g i c a l l y , Lake Onalaska, the 
r i v e r pool being studied, provides a major staging and feeding 
area for migration of the canvasback (Aythya v a l i s i n e r i a ) i n the 
M i s s i s s i p p i River Flyway. About 1200 samples were analyzed by 
c a p i l l a r y gas chromatography f o r 69 PCB isomers. Sample types 
included water, suspended sediments, sediments, f i s h , benthos, 
and plants. 
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12. STALLING ET AL. homer Specific Analysis of PCBs 197 

The amount and c o m p l e x i t y of data r e s u l t i n g from these 
analyses prompted us to search f o r an improved method f o r 
c h a r a c t e r i z i n g and comparing information gathered from m u l t i -
component analyses of l a r g e numbers of samples. M u l t i v a r i a t e 
s t a t i s t i c s were a p p l i e d i n the process of c h a r a c t e r i z a t i o n of 
l a r g e numbers of complex r e s i d u e s . Such methods have been 
referred to as Chemometrics (24). 

Soft Independent Method of Class Analogy (SIMCA), a pattern 
recognition technique based on p r i n c i p a l components (25) was 
s e l e c t e d to e v a l u a t e and apply to the problems of e s t a b l i s h i n g 
s i m i l a r i t i e s among sample residue p r o f i l e s . The development of a 
laboratory data management system to a s s i s t i n the c a l c u l a t i o n 
and organization of r e s u l t s greatly enhanced the f e a s i b i l i t y of 
t h i s approach (26). 

Materials and Methods 

Gas Chromatographic A n a l y s i s . We used temperature programmed 
glass c a p i l l a r y gas chromatography to separate PCB residues. Use 
of an e l e c t r o n capture d e t e c t o r r e q u i r e d an etficaceous sample 
cleanup for isomer quantitation (27). These combined techniques 
o f f e r e d enhanced s e p a r a t i o n s and enabled us to i d e n t i f y and 
q u a n t i t a t e i n d i v i d u a l PCB c o n s t i t u e n t s (JL, 27). Schwartz (27) 
separated more than 100 c o n s t i t u e n t s from a 1:1:1:1 m i x t u r e of 
Aroclors 1242, 1248, 1254, and 1260. 

A V a r i a n Model 3700 gas chromatograph ( V a r i a n A s s o c i a t e s , 
Palo A l t o , CA) equipped with a " 3 N i electron capture detector was 
used f o r sample a n a l y s i s . The column was a g l a s s c a p i l l a r y 
coated with a hydrocarbon stationary phase having the formula 
C87 H176 a n d structure (24,24-diethyl-19,29-dioctadecylheptatetra-
contane) (Quadrex Corp., New Haven, CT). The column was a w a l l 
coated open tube (WCOT) (0.25 mm x 100 m) having a f i l m thickness 
of a p p r o x i m a t e l y 0.3 microns and 3670 t h e o r e t i c a l p l a t e s per 
meter. A 30 m s e c t i o n of the column was c o n d i t i o n e d at 260 °C 
overnight and the temperature program rate, l i n e a r gas v e l o c i t y , 
and detector makeup gas were determined by peak r e s o l u t i o n of 
PCB isomers. 

Chromatographic c o n d i t i o n s were s i m i l a r f o r a l l sample 
analyses. The temperature program was as f o l l o w s : i n i t i a l 
temperature 120 °C programmed at 2 °C/min to a f i n a l temperature 
of 255 °C; i n j e c t o r 220 °C; and d e t e c t o r temperature 320 °C. 
The c a r r i e r gas, hydrogen, was maintained at a column head 
pressure of 20 p s i . The electron capture detector makeup gas was 
nitrogen with a flow rate into the detector of 17 mL/min. 

The same chromatographic parameters were used i n determining 
the molar response of the i n d i v i d u a l PCB isomers except, that the 
area responses were determined with a flame i o n i z a t i o n detector. 
The flow rates of the hydrogen and a i r combustion gases were 30 
and 300 mL/min, r e s p e c t i v e l y . Response f a c t o r s needed to 
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198 TRACE RESIDUE ANALYSIS 

c a l c u l a t e i n d i v i d u a l congener concentrations were calculated by 
using the r a t i o s of flame i o n i z a t i o n to electron capture response 
for each standard peak (28, 29). 

To i n t e g r a t e the d i g i t i z e d e l e c t r i c a l s i g n a l s from the gas 
chromatograph, we used a PDP 11/ 3 4 computer ( D i g i t a l Equipment 
Corp., Maynard, MA) and the computer program PEAK-11, s u p p l i e d 
from that corporation. An o p e r a t i o n a l a m p l i f i e r w i t h v a r i a b l e 
g a i n was i n t e r f a c e d to the the gas chromatographic a m p l i f i e r 
output to amplify the signal from the electron capture detector. 
Data were a c q u i r e d at the r a t e of 20 p o i n t s per sec and the 
inte g r a t i o n and gas chromatographic operations were cont r o l l e d by 
a V a r i a n Autosampler (Model 8000), which a l s o d e l i v e r e d a 
cal i b r a t e d amount of sample to the gas chromatographic i n j e c t i o n 
p o r t . E x t e n s i v e q u a l i t y c o n t r o l and v e r i f i c a t i o n of analyses 
resulted i n reproducible r e s u l t s (26). 

Laboratory Data Base System. Data representing integrated peak 
areas were transfered to a second PDP-11/34 computer by magnetic 
tape, where programs w r i t t e n i n D i g i t a l Standard MUMPs (DSM-11) 
created and maintained the chromatography data base. MUMPs was 
selected for development of t h i s data base because t h i s language 
i s s t r u c t u r e d to e f f i c i e n t l y deal w i t h sparse a r r a y s . The 
computer was configured with 96k words of memory, 20M words of 
disk storage, and a 9 track magnetic tape. 

The data base programs accomplished the fo l l o w i n g tasks: (1) 
generation of retention values for each PCB isomer peak ( r e l a t i v e 
to p,p*-DDE) i n every chromatogram; (2) comparison of an Aroclor 
standard, or any mixture of Aroclors, to a master f i l e of isomers 
c o n t a i n i n g s t r u c t u r a l i d e n t i f i c a t i o n , number of ortho, ortho 1-
chlorine substituents, and flame i o n i z a t i o n response fact o r s ; ( 3 ) 
g e n e r a t i o n of l i n e a r and l o g a r i t h m i c (to accomodate non-linear 
d e t e c t o r r e s p o n s e ) r e g r e s s i o n e q u a t i o n s f o r each of the 
c o n s t i t u e n t s (69, 92, or 105 isomers) on the b a s i s of A r o c l o r 
c o n c e n t r a t i o n and area of each component; ( 4 ) a s s i s t a n c e i n 
resolving ambiguities i n the process of matching standard peaks 
to sample c o n s t i t u e n t s ; (5) g e n e r a t i o n of numerous r e p o r t s on 
sample processing, including status of sample data, i.e., samples 
logged i n , raw chromatograpic data matched to standards, 
c o n c e n t r a t i o n of c o n s t i t u e n t s calculated from regression curve, 
data archived to magnetic tape, and (6) preparation and magnetic 
tape storage of f i n a l r e p o r t s on c o n c e n t r a t i o n s of up to 105 
isomers i n samples, w i t h n o t a t i o n s on whether the measured 
concentration f e l l w i t h i n , above, or below the c a l i b r a t i o n range 
for that constituent. A flow chart f o r the data analysis scheme 
i s outlined i n Figure 1. 

In a d d i t i o n to these f u n c t i o n s , other data base programs 
provided output f o r m a t i n g and r e t r i e v a l of c o n c e n t r a t i o n data 
from completed a n a l y t i c a l reports and transfer of these data onto 
magnetic tape f o r subsequent examination by SIMCA programs. 
A d d i t i o n a l f e a t u r e s of the p a t t e r n recognition data management 
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STALLING ET AL. Isomer Specific Analysis of PCBs 

F i g u r e 1. Flow Diagram of PCB Data Bas 
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200 TRACE RESIDUE ANALYSIS 

subprograms provided peak frequency and ranking summaries w i t h i n 
each s e l e c t e d sample set. Programs were w r i t t e n f o r gr a p h i c 
p l o t s of c o n c e n t r a t i o n s of PCB isomer components and r e l a t e d 
s t a t i s t i c s . 

A summary of these functions f o l l o w s : 
1• B u i l d the matrix of samples to output 
2. Output the summary matrix of sample i d e n t i t y 
3. Edit the summary matrix 
4. B u i l d the set of sample concentrations 
5. Output the set of sample concentrations 
6. B u i l d the non-zero concentration matrices 
7. Output the non-zero concentration matrices 
8. Plo t concentration histogram of a sample 
9. Plot means and standard deviations 

10. Generate p r i n c i p a l components plots of data blocks 

Results and Discussion 

When large numbers of chromatograms are analyzed v i s u a l l y from 
chart paper or tabular data, i t i s d i f f i c u l t to detect minor (or 
perhaps major) s i g n i f i c a n t d i f f e r e n c e s that may be present i n 
samples from d i f f e r e n t l o c a t i o n s or d i f f e r e n c e s that could be 
at t r i b u t e d to changing physiochemical processes. A t y p i c a l gas 
chromatogram of a PCB mix t u r e ( F i g u r e 2) re p r e s e n t s a 1:1:1:1 
mixture of Aroclors 1242, 1248, 1254, and 1260. I t contains more 
than 100 component peaks, of which 69 were selected f o r use i n 
these analyses. 

An a b r e v i a t e d r e p o r t from the a n a l y s i s of the m i x t u r e of 
Aroclor standards j u s t described i s shown i n Table I. The report 
i n d i c a t e s the i n d i v i d u a l i s o m e r s t r u c t u r e and degree of 
ch l o r i n a t i o n , ortho-, ortho- 1 s u b s t i t u t i o n , isomer concentration, 
t o t a l concentration. 

To i l l u s t r a t e the problems associated with evaluating such 
data, we conducted s e v e r a l s t u d i e s w i t h A r o c l o r standards and 
mixt u r e s of these standards i n an e f f o r t to determine what 
information could be r e a d i l y obtained with the SIMCA method of 
p a t t e r n r e c o g n i t i o n (30-32). The f o l l o w i n g d i s c u s s i o n 
i l l u s t r a t e s some of the features of t h i s approach and describes 
how the SIMCA method works when applied to Aroclor mixtures. 

G e n e r a l D i s c u s s i o n of SIMCA. C o n s i d e r a s e r i e s of gas 
chromatograms obtained on a large number of samples (N). These 
samples can a l l contain the same number of constituents ( P ) — i n 
the present study, 69 PCB isomers. Such data can be tabulated i n 
m a t r i x form as i n F i g u r e 3. Each row of the m a t r i x i s a 
chromatogram with the elements of the matrix, x ^ i * representing 
concentration of peak i . i n sample k. 

We f i r s t c o n s i d e r the h y p o t h e t i c a l case when there i s no 
v a r i a t i o n i n c o m p o s i t i o n of the samples, e i t h e r i n r e l a t i o n to 
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STALLING ET AL. Isomer Specific Analysis of PCBs 201 

Aroclor Standard Mixture 

0.35 ng Each 

1242 1248 1254 1260 

1.4 ng Total PCB's 

t(min) 

F i g u r e 2. C a p i l l a r y Gas Chromatogram of 1:1:1:1 
A r o c l o r 12 42:12 48:1254:1260 M i x t u r e . 
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202 TRACE RESIDUE ANALYSIS 

the r e l a t i v e c o n c e n t r a t i o n s of c o n s t i t u e n t s or i n the ab s o l u t e 
concentration of isomers. I f our N samples are projected i n t o 
P. space, due to our p r i o r requirement of i d e n t i t y , they would 
appear as a t i g h t c l u s t e r , the only v a r i a t i o n being due to 
measurement error. 

Table I . Isomer Structure Assignment, Response Factors, and 
Concentration i n 1:1:1:1 Mixture of Aroclor 1242;1248;1254 
and 1260. 

Chlorines Cone.^ 
Peak : RRT1 Total Ortho Structure ug/e 

1 .2681 2 2 2,2» .0098 2.53E-02 
2 .2706 2 2 2,6 3.00E-5 9.00E-05 
3 .3599 2 1 2,5 .0012 3.31E-03 
4 .3695 2 1 2,4 .0046 1.4OE-02 
5 .3776 3 - 3CL .0029 9.18E-03 
6 .3903 2 1 2,4' .0206 6.86E-02 
7 .4615 3 2 2,2',5 .0468 1.53E-01 
8 .4810 3 2 2,2',4 .0150 4.91E-02 
9 .4873 3 2 2,2',3 .0152 5.05E-02 

10 .5173 3 2 2,4',6 .0096 3.10E-02 
11 .5352 2 0 4,4' .0039 1.03E-02 
12 .5803 4 3 2,2»,5,6' .0062 2.01E-02 
13 .6031 3 1 2,3»,5 .0076 1.93E-02 
14 .6107 4 3 2,2',4,6' .0040 1.39E-02 
15 .6252 3 1 2,4',5 .0377 1.21E-01 
16 .6390 3 1 2,4,4* .0313 8.5/E-02 
17 .6525 3 1 2,3',4 .0106 3.42E-02 
18 .6933 4 2 2,2',5,5» .0623 2.00E-01 
19 .7145 4 2 2,2',4,5» .0226 7.33E-02 
20 .7201 4 2 2,2»,3,5' .0574 1.83E-01 
21 .7387 4 2 2,2',4,4' .0080 2.72E-02 
22 .7441 4 2 2,2',3,4« .0085 2.75E-02 
23 .7502 4 2 2,2',3,3» .0125 4.12E-02 
24 .7596 4 2 2,2',3,4 .0095 3.08E-02 
25 .7758 4 2 2,3,4',6 .0159 5.10E-02 
26 .806 9 3 0 3,4,4» .0034 1.16E-02 
27 .8237 5 3 2,2',3,5,6 .0429 1.37E-01 
28 .8547 4 3 2,2',4,5,6' .0107 3,48E-02 
29 .8897 4 1 2,3',4»,5 .0351 1.10E-01 
30 .8990 5 3 2,2',3,4,6' .0100 3.14E-02 
31 .9043 5 - 5CL .0252 7.80E-02 
32 .9174 4 1 2,3,3',4» .0112 3.66E-02 
33 .9320 4 1 2,4,4',5 .0236 8.01E-02 
34 .9353 6 4 2,2',3,3',6,6» .0002 6.28E-04 
35 .9596 5 2 2,2',4,5,5' .0560 1.77E-01 
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12. STALLING ET AL. Isomer Specific Analysis of PCBs 203 

Table I . Continued 
Chlorines Conc.£ 

Peak RRT Total Ortho Structure F i
2 ug/g 

36 .9832 5 2 2,2' ,4,4',5 .0176 5.78E-02 
38 .9913 5 2 2,2' ,3 ,3',5 .0122 3.98E-02 
39 1.0205 5 2 2,2f ,3,3',4 .0571 1.83E-01 
40 1.0499 6 3 2,2',3 ,5,5',6 .0192 6.10E-02 
41 1.0726 6 3 2,2',3 ,4',5,6 .0021 6.59E-03 
42 1.0815 6 3 2,2',3 ,4',5,6' .0485 1.54E-01 
43 1.1181 6 3 2,2',3 ,4,5',6 .0144 4.62E-02 
44 1.1385 5 1 2,3 ',4,5,5' .0044 1.40E-02 
45 1.1613 5 1 2,3 ,3',4,4' .0274 8.50E-02 
46 1.1938 6 - 6CL .0062 2.00E-02 
47 1.2218 6 2 2,2',4 ,4',5,5' .0425 1.45E-01 
48 1.2382 6 2 2,2',3 ,3',5,5' .0004 1.84E-03 
49 1.2561 6 2 2,2',3 ,4,4',5' .0273 8.79E-02 
50 1.2730 7 3 2,2',3,4' ,5,5',6 .0033 1.01E-02 
51 1.2998 7 3 2,2',3,3 ',4,5,6 .0145 4.52E-02 
52 1.3146 7 3 2,2',3,3 ',4,5,6' .0080 2.48E-02 
53 1.3228 7 3 2,2»,3,4,< ̂',5',6 .0070 2.18E-02 
54 1.3358 7 3 2,2',3,3' ,4,5',6 .0024 7.49E-03 
55 1.3604 7 3 2,2',3,3' ,4,4',6 .0048 1.51E-02 
56 1.3936 8 3 2 ,2',3,4,4' ,5,5',6 7 .0E-5 2.24E-04 
57 1.4280 6 1 2,3,3» ,4,4',5 .0028 8.73E-03 
58 1.4444 7 2 2,3,3',4' ,5,5',6 8.0E-5 2.51E-04 
59 1.4693 7 2 2,2',3,4 ,4',5,5' .0250 9.45E-02 
60 1.5032 7 2 2,2',3,3' ,4,4',5 .0096 2.99E-02 
61 1.5208 8 3 2 ,2',3,3',4 ,5,5',6 .0025 7.84E-03 
62 1.5295 8 3 2, 2 ,,3,3 ,,4 f ,5,5',6 .0013 4.13E-03 
63 1.5454 8 - 8CL .0020 6.28E-03 
64 1.5575 8 - 8CL .0025 7.73E-03 
65 1.5948 8 3 2 ,2',3,3',4 ,4',5,6 .0016 5.05E-03 
66 1.6119 9 4 2,2 ',3,3',4,4 ',5,6,6' 5.0E-5 1.25E-04 
67 1.6502 8 - 8CL 1 .OE-5 3.13E-05 
68 1.7155 8 2 2 ,2',3,3',4 ,4',5,5' .0011 3.58E-03 
69 1 .7380 9 4 2,2' ,3,3',4,4« ,5,5',6 2.0E-5 

Total 
6.71E-05 
3.24E+00 

Retention Time Relative to £-,£'-DDE 
Ratio of Electron Capture to Flame I o n i z a t i o n Response 
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204 TRACE RESIDUE ANALYSIS 

Peak Number 

Sample 1 2 3 
number 

^ k i 

Figure 3. Matrix Representation of Sample Analysis f o r P. Peaks 
and N Samples (Chromatography Data Matrix). 

Each sample can be modeled by Equation 1, where m̂  

2L k i = Mi + efci (1) 

i s the mean co n c e n r a t i o n of each peak i n the m a t r i x and e.^ 
contains the error of measurement and error associated with the 
mathematical modeling of the data array (model error). 

We now r e l a x our requirement f o r i d e n t i t y and a l l o w the 
samples to be s i m i l a r . This i s analogous to having a group of N 
samples of the same s p e c i e s , type of A r o c l o r , or mi x t u r e of 
Aroclors. Such data can be shown to be modeled by Equation 2, 

A 
*4ci = S i + i L ^ a b a i + ^ k i ( 2> 

i n which A-product terms have been added to account f o r the 
v a r i a t i o n i n the data (30). This i s shown i n 3-dimensions below 
i n F i g u r e 4. 

This i s a p r i n c i p a l components model i n which i s the 
lo a d i n g of peak i . i n term a., and j t j c a i s the score of o b j e c t k i n 
term a.; b i s a peak s p e c i f i c term and t. i s an ob j e c t or sample 
s p e c i f i c term. The v a r i a t i o n about the mean, m-, can be random or 
sy s t e m a t i c . I f random v a r i a t i o n i s observed i t can be due to 
measurement e r r o r , and t h i s v a r i a t i o n can be used i n q u a l i t y 
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12. STALLING ET AL. Isomer Specific Analysis of PCBs 205 

assurance of the data. I f the measured v a r i a t i o n i s systematic, 
i t can be the r e s u l t of class s p e c i f i c i n t e r n a l v a r i a t i o n , which 
can be used i n c l a s s i f i c a t i o n or c o r r e l a t i o n studies. 

Cone. Peak 3 

ooo N-points as a c l u s t e r o 

Cone. Peak 2 

Cone. Peak 1 

Figure 4. Clustering of a Class of I d e n t i c a l Samples. 

F i g u r e 5 i l l u s t r a t e s the cases i n which the data are 
represented by a p o i n t (A=0), l i n e (A=l) or plane (A=2). A i s the 
number of product terms i n Equation 2. Samples c l u s t e r e d i n a 
p o i n t represent r e p l i c a t e analyses of a s i n g l e sample i n which 
there i s no v a r i a t i o n other than measurement e r r o r , and the 
product term i n Equation (2) i s 0. In these l a s t two s i t u a t i o n s , 
the data vary about the mean, m̂ , and the p o s i t i o n of each 
o b j e c t on the l i n e or plane g i v e n by the peak c o o r d i n a t e s . An 
example of data that would form a l i n e are those based on an 
analysis of a range of concentrations of a si n g l e Aroclor (A=l). 
Data tha t c o u l d be represented i n a plane r e s u l t from the 
analysis of the f r a c t i o n a l composition of two (or more) Aroclor 
mixtures (A=2). In F i q u r e 5, <l designates the c l a s s number of 
the these hypothetical samples. 

One can use p r i n c i p a l components plots to v i s u a l l y inspect 
higher d i m e n s i o n a l data. T h e i r use i s e q u i v a l e n t to p r o j e c t i n g 
the h i g h e r d i m e n s i o n a l data onto a two-dimensional plane. Such 
p l o t s are h e l p f u l i n i n t e r p r e t i n g chromatographic or other 
s c i e n t i f i c d a t a composed of many measurements (peaks or 
dimensions) • 

I f i t i s known from the h i s t o r y of the samples i l l u s t r a t e d 
i n F i g u r e 3 that the items r e p r e s e n t ^ - d i s t i n c t l y d i f f e r e n t 
groups or c l a s s e s , a c l a s s i f i c a t i o n problem can be f o r m u l a t e d . 
These c l a s s e s may r e s u l t from samples being d e r i v e d from 
d i f f e r e n t locations or of d i f f e r e n t species, etc. In t h i s study, 
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2 0 6 TRACE RESIDUE ANALYSIS 

sample data from the analysis of f i v e Aroclors were used (Aroclor 
1242, 1248, 1254, 1260 and a 1:1:1:1 mixture of these four 
Aroclors)* Together, these sample data compose f i v e classes* 

Using SIMCA, one can derive ^ - d i s j o i n t principal components 
models f o r d i s t i n c t classes* This d e r i v a t i o n i s given i n 
Equation 3 and a h y p o t h e t i c a l set of data representing three 
classes (.gj=3) of data of increasing complexity i s shown in Figure 
5. The axes i n Figure 5 may represent e i t h e r the coordinates of 
the o r i g i n a l data or those resulting from a transformation of the 
data such as w i l l be discussed l a t e r i n the s e c t i o n on data 
pretreatment. In the examples used i n t h i s paper, data have not 
been transformed* D i s j o i n t p r i n c i p a l components models are 
bounded by l i m i t s derived from the data used to c a l i b r a t e the 
class model. 

* k i q = 3 i q + i ± k a q * a i q + % i q <3> a=l 

From the e^-^-values i n Equation 3, a standard deviation for 
each object can be calculated and from these a residual standard 
deviation for each class (g) can be obtained. Twice the residual 
standard deviation around the l i n e or above and below the plane 
f o r a c l a s s defines a volume i n P-space where c l a s s e s have a 
high probability of occurrence. C l a s s i f i c a t i o n of an unknown can 
be based on i t s projection into P-space and determination of i t s 
p o s i t i o n . I t may be i n s i d e one or none of the defined c l a s s e s . 
This method has a number of other features that have previously 
been t r e a t e d (32., 33) and we present only a l i m i t e d d i s c u s s i o n 
here. P r i n c i p a l components a n a l y s i s and the c l o s e l y r e l a t e d 
f a c t o r a n a l y s i s , as a p p l i e d to s c i e n t i f i c data, have been w e l l 
reviewed (25., 30). 

Another feature of SIMCA that i s of considerable u t i l i t y l i e s 
i n the a s s i s t a n c e the technique provides i n s e l e c t i n g r e l e v a n t 
variables. Information contained i n the residuals, e ^ i * c a n D e 

used to s e l e c t v a r i a b l e s r e l e v a n t to the c l a s s i f i c a t i o n 
o b j e c t i v e . I f the r e s i d u a l s f o r a v a r i a b l e are not w e l l 
p r e d i c t e d by the model, the standard d e v i a t i o n i s l a r g e . An 
expression defined as modeling power has been detined to 
q u a n t i t a t i v e l y express t h i s r e l a t i o n s h i p . The modeling power 
(MPOW) is defined as: 

MPOW = 1 - s j / s ^ y 

where s.̂  i s the standard d e v i a t i o n of a v a r i a b l e a f t e r being 
f i t t e d to a model and s^ i s the standard deviation before i t i s 
f i t t e d to a c l a s s model. As MPOW approaches 1, the v a r i a b l e 
contributes strongly to class description. 
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12. STALLING ET AL. Isomer Specific Analysis of PCBs 207 

P r i n c i p a l C o m p o n e n t s P l o t s . To o b t a i n a v i s u a l r e p r e s e n t a t i o n o f 
t h e d a t a s t r u c t u r e f o r t h e c l a s s o r c l a s s e s b e i n g e x a m i n e d , o n e 
c a n p r o j e c t t h e d a t a o n t o a t w o - d i m e n s i o n a l p l a n e . A c o n v e n i e n t 
p l a n e f o r m a p p i n g i s t h a t d e s c r i b e d b y t h e t w o f i r s t p r i n c i p a l 
c o m p o n e n t s . T h e s e p l o t s a r e d e r i v e d by p l o t t i n g t h e t ^ • a n d t o i 
v a l u e s f o r e a c h s a m p l e a n d d e s i g n a t i n g t h e l o c a t i o n o f t h e s a m p l e 
w i t h t h e s a m p l e n u m b e r . T h e a x e s a r e d e s i g n a t e d i n t h e s e 
p r i n c i p a l c o m p o n e n t s p l o t s a s T h e t a 1 a n d T h e t a 2. I n f o r m a t i o n 
a b o u t t h e s i m i l a r i t y o f s a m p l e s i s d e r i v e d i n m o s t c a s e s , b y 
t h e i r c l o s e p r o x i m i t y i n t h e p r i n c i p a l c o m p o n e n t s p l o t . U s u a l l y , 
s e p a r a t i o n o f d i f f e r e n t c l a s s e s a r e c l e a r . B y e x a m i n i n g t h e 
c l u s t e r s o f s a m p l e s i n t h e g r a p h i c a l p r o j e c t i o n s , t h e a n a l y s t 
g a i n i n s i g h t i n t o s a m p l e o u t l i e r s f r o m t h e p r i n c i p a l c o m p o n e n t s 
p l o t s . 

C o n e . P e a k 3 

o o o N - p o i n t s a s a c l u s t e r 
0 A=0, 4=1 

C o n e . P e a k 1 

F i g u r e 5. C l u s t e r i n g o f T h r e e C l a s s e s o f S a m p l e s . S a m p l e s t h a t 
a r e i d e n t i c a l (A=0, 4=1); o r h a v e o n e f a c t o r ( A = l , 4=2); o r t w o 
f a c t o r s v a r y i n g (A=2, 4=3). C l a s s n u m b e r = 4 a n d A = n u m b e r o r 
p r o d u c t t e r m s i n E q u a t i o n 2. 

I n f o r m a t i o n a b o u t r e l a t i o n a m o n g v a r i a b l e s i n s a m p l e s 
b e l o n g i n g t o a d a t a s e t c a n b e o b t a i n e d f r o m a n e x a m i n a t i o n o f 
p l o t s o f t h e s a m p l e l o a d i n g t e r m s (Jb^ ̂  v s b ^ ) . I n t h e s e p l o t s 
t h e a x e s a r e d e s i g n a t e d B e t a 1 a n d B e t a 2. V a r i a b l e s r e s p o n s i b l e 
f o r c e r t a i n s a m p l e s b e i n g d i f f e r e n t f r o m t h e m a i n c l u s t e r o f 
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208 TRACE RESIDUE ANALYSIS 

samples are readily discerned. Three dimensional plots derived 
from the f i r s t , second, and t h i r d components can sometimes 
c l a r i f y a d d i t i o n a l r e l a t i o n s among samples. Such a case i s 
discussed lat e r in discussions of modeling d i f f e r e n c e s both i n 
concentration and composition. 

The s i m i l a r i t y of samples can be e v a l u a t e d by u s i n g 
geometrical constructs based on the standard d e v i a t i o n of the 
objects modeled by SIMCA. By enclosing c l a s s e s i n volume 
elements i n d e s c r i p t o r space, the SIMCA method provides 
information about the existence of s i m i l a r i t i e s among the members 
of the defined classes. Relations among samples, when visualized 
i n t h i s way, increase one's a b i l i t y to formulate questions or 
hypotheses about the data being examined. The s e l e c t i o n of 
v a r i a b l e s on the basis of MPOW als o provides clues as to how 
samples within a class are similar, and the derived class model 
describes how the objects are s i m i l a r , with regard to the 
internal variation of these variables. 

One must consider the number of product terms that should be 
included i n a model. For chromatography data obtained from 
simil a r samples, i t can be expected that the data w i l l contain a 
high degree of correlation. In our experiments, two- or three-
component models u s u a l l y accounted f o r >90% of the variance i n 
the data f o r a c l a s s of s i m i l a r samples. R e s u l t s from 
crossvalidation should be considered as the primary c r i t e r i a i n 
selecting the number of principal components to be extracted from 
a given data set ( 3 4 ) . 

In the principal components plots presented in this paper, 
the number p l o t t e d corresponds to the sample i d e n t i f i c a t i o n 
number given i n the appendix. If more than one sample has the 
same locus i n the score (Theta's) or loading p l o t s (Beta's), the 
l e t t e r M i s p l o t t e d . The values f o r the sample coordinates i n 
the p r i n c i p a l components p l o t s can be l i s t e d by the SIMCA-3B 
program. 

Data Pretreatment 

A number of data pretreatments (scalings and transformations) are 
possible with SIMCA (and other methods). The appropriate scaling 
f o r a given data set i s d i f f i c u l t to a n t i c i p a t e and depends on 
the nature of the problem being addressed as w e l l as on the 
st r u c t u r e of the data being examined. This aspect of p a t t e r n 
r e c o g n i t i o n has not been been adequately i n v e s t i g a t e d f o r gas 
chromatography data. In the applications discussed here, we have 
used two techniques—normalization and regularization. 

N o r m a l i z a t i o n . Each peak i s weighted to i t s f r a c t i o n a l (or 
percentage) composition. This weighting prevents samples with 
large total concentrations from heavily influencing an analysis. 
Also, t h i s s c a l i n g technique focuses the c l a s s i f i c a t i o n on 
questions about v a r i a t i o n s i n r e l a t i v e composition of samples 
independently of the absolute concentration measured. Although 
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12. STALLING ET AL. Isomer Specific Analysis of PCBs 209 

i n s t r u m e n t a l l i m i t s o f d e t e c t i o n c a n s t r o n g l y i n f l u e n c e t h i s d a t a 
p r e t r e a t m e n t , t h i s f e a t u r e , w h e n u s e d w i t h c a u t i o n , c a n b e 
e f f e c t i v e i n c h a r a c t e r i z a t i o n o f t h e r a n g e o f t o t a l 
c o n c e n t r a t i o n s t h a t c a n be a n a l y z e d . 

R e g u l a r i z a t i o n . R e g u l a r i z a t i o n , t h e a u t o s c a l i n g o f K o w a l s k i , ( 35 ) 
a n d s c a l i n g o f M a s s a r t , ( 3 6 ) t r a n s f o r m s t h e d a t a s o t h a t t h e 
d a t a s e t h a s a z e r o m e a n a n d a v a r i a n c e o f one f o r e a c h v a r i a b l e . 
T h i s m e t h o d e q u a l i z e s t h e i n f l u e n c e o f p e a k s o r m e a s u r e m e n t s . 

A r i s k w i t h t h i s a p p r o a c h i s t h a t i f t h e r e a r e a l a r g e n u m b e r 
o f c o n s t a n t n o n - z e r o e n t r i e s i n t h e d a t a m a t r i x , t h e y c a n a c t a s 
b i n a r y v a r i a b l e s a n d p e r h a p s w e i g h t t h e a n a l y s i s t o w a r d y i e l d i n g 
t r i v i a l r e s u l t s . W h e n c r o s s v a l i d a t i o n i s u s e d , h o w e v e r , t h i s 
r i s k i s r e d u c e d . 

C a l c u l a t i o n o f C o m p o s i t i o n o f M i x e d A r o c l o r s 

S I M C A c a n b e a p p l i e d t o t h e p r o b l e m o f c l a s s i f i c a t i o n w h e n 
a t t e m p t i n g t o c o r r e l a t e m e a s u r a b l e e f f e c t v a r i a b l e s w i t h 
c o m p o s i t i o n o f t h e c l a s s i f i e d s a m p l e s . I n c o r r e l a t i o n a n a l y s e s 
o n e m a y w i s h t o d e t e r m i n e h o w o t h e r s a m p l e v a r i a b l e s , s u c h a s 
s e d i m e n t c o m p o s i t i o n , o r g a n i c c o n t e n t , l i p i d c o n c e n t r a t i o n , e t c . , 
i n f l u e n c e t h e c o m p o s i t i o n o f m e a s u r e d r e s i d u e s o r c o n c e n t r a t i o n s 
o f P C B s . 

T h i s d e t e r m i n a t i o n c a n n o t b e m a d e b y u s i n g m u l t i p l e 
r e g r e s s i o n t e c h n i q u e s b e c a u s e t h e r e a r e t o o m a n y i n d e p e n d e n t 
v a r i a b l e s , x ^ . , r e l a t i v e t o d e p e n d e n t v a r i a b l e s , . y ^ - . The S I M C A -
3B p r o g r a m , P L S - 2 , u s e s t h e p a r t i a l l e a s t s q u a r e s ( P L S ) m e t h o d . 
T h i s m e t h o d h a s b e e n p r o p o s e d by H . W o l d ( 37 ) a n d w a s d i s c u s s e d 
by S . W o l d ( 2 5 ) . I n s u c h a p r o b l e m t h e r e a r e t w o b l o c k s o f d a t a , 
Y a n d X . I t i s a s s u m e d t h a t Y i s r e l a t e d t o X b y l a t e n t 
v a r i a b l e s i i a n d _t ; _t i s d e r i v e d f r o m t h e X b l o c k a n d i i i s d e r i v e d 
f r o m t h e Y b l o c k . 

T h e s e r e l a t i o n s a r e m a t h e m a t i c a l l y s t a t e d i n E q u a t i o n 4 a n d 
5 . 

Y <— u <— _t <— X ( 4 ) 

W i t h t h e P L S m e t h o d t h e X - b l o c k i s m o d e l e d b y t h e e q u a t i o n 

A 

^ k i " S i + JJ * k a ^ k a + £ k i < » 

a n d t h e Y - b l o c k b y t h e e q u a t i o n 

A 

" S j iifca «aj + I k j ( 6 ) 
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210 TRACE RESIDUE ANALYSIS 

Both resemble p r i n c i p a l components models, but are derived so 
as to s i m u l t a n e o u s l y m i n i m i z e e ^ and f^i i n the l e a s t squares 
sense w h i l e y i e l d i n g i . v a

f s and u k a Hs that o p t i m i z e the 
c o r r e l a t i o n between the x's and y's. The u k a

t s and .t^ a ' 8 are 
analogous to the components i n p r i n c i p a l components a n a l y s i s 
whereas the Jb and £ terms correspond to l o a d i n g v a l u e s . The 
loadi n g s r e f l e c t the importance or influence of the i n d i v i d u a l 
peaks i n the PLS model. 

A p r e d i c t i v e r e l a t i o n between the l a t e n t v a r i a b l e s i s 
constructed as: 

Ska " 4 i k a + (7) 

and can be used to es t i m a t e u (and the y's) from the X-block f o r 
PCB compositions s i m i l a r to those modeled. 

Applications of SIMCA to Chromatography Data 

In the discussion that f o l l o w s , the SIMCA method i s i l l u s t r a t e d 
by a p p l y i n g i t to three problems: (1) q u a l i t y assurance of 
chromatography data, (2) c l a s s i f i c a t i o n of unknowns, and (3) 
p r e d i c t i n g the co m p o s i t i o n of unknown samples. This t h i r d 
problem i s one of deconvolution of a mixture and c a l c u l a t i o n of 
the r e l a t i v e concentration of the constituents (25. 38). 

The data modeled are from gas chromatograms obtained f o r 
Aroclors 1242, 1248, 1254 and 1260. The unknown samples are from 
the anaysis of used transformer o i l obtained from a waste dump i n 
New Jersey. The concentration of i n d i v i d u a l isomers i n selected 
A r o c l o r and t r a n s f o r m e r o i l samples are gi v e n i n Appendix I. 
The data are organized i n a m a t r i x i n which the f i r s t f o u r data 
e n t r i e s f o r each sample i n row 1 of the data array (Table 2, 
A p e n d i x I) d e s i g n a t e the c o m p o s i t i o n of the sample. F o r 
standards, these four variables represent the f r a c t i o n a l parts of 
A r o c l o r 1242, 1248, 1254, or 1260, r e s p e c t i v e l y , that were 
combined. Results from the analysis of transformer o i l (samples 
21-23) are of unknown f r a c t i o n a l c o m p o s i t i o n and v a r i a b l e s 1 
through 4 are n u l l e n t r i e s . In the examples t h a t f o l l o w data 
from samples analyzed (Table 1, Appendix I) were used i n part or 
i n t o t a l to i l l u s t r a t e the PLS method. 

As i n many such problems, some form of pretreatment of the 
data i s warranted. In a l l a p p l i c a t i o n s d i s c u s s e d here, the 
a n a l y t i c a l d a t a e i t h e r have been u n t r e a t e d o r have been 
normalized to r e l a t i v e concentration of each peak i n the sample. 
Quality Assurance. P r i n c i p a l components analysis can be used to 
detect l a r g e sample d i f f e r e n c e s t h a t may be due to instrument 
error, noise, etc. This i s i l l u s t r a t e d by using samples 17-20 i n 
Appendix I ( F i g u r e 6). These samples are r e p l i c a t e assays of a 
1:1:1:1 mixture of the standard Aroclors. F i t t i n g these data f o r 
the four samples to a 2-component model and p l o t t i n g the two 
f i r s t p r i n c i p a l components (Theta 1 and Theta 2 [s c o r e s ] i n 
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12. STALLING ET AL. Isomer Specific Analysis of PCBs 211 

Equation 3 f o r the samples shows that samples 19 and 20 are 
di f f e r e n t from samples 17 and 18 (Figure 7). 

The plot of the loadings for each chromatographic peak (Beta 
1 vs. Beta 2; bi ̂  and b 2£ Equation [3]) reveals information about 
the sources o f the v a r i a n c e i n the f o u r samples ( F i g u r e 8). 
In f o r m a t i o n i n Table I I con f i r m s these f i n d i n g s , as i t i s seen 
that the v a r i a b i l i t y i s l a r g e l y the r e s u l t of the f a i l u r e to 
detect two peaks (peak 1 [variable 5], and peak 4 [variable 9]). 
A l s o , peak 63 ( v a r i a b l e 67) i n sample 20 exceeds i t s average 
concentration measured i n a l l samples by 9%. 

The data show that peak 1 i s zero i n sample #19 and #20, that 
peak 5 i s zero i n sample 19, and that there i s about 12% 
v a r i a t i o n i n peak 63 i n samples 19 and 20 (Table I I ) . Only a t t e r 
a c a r e f u l examination of the data pl o t t e d f o r each analysis are 
these d e v i a t i o n s apparent i n the chromatograms. These r e s u l t s 
i l l u s t r a t e the u t i l i t y of p r i n c i p a l components analysis (PCA) f o r 
checking the i n t e r n a l consistency of complex chromatograms. 

Table I I . P a r t i a l Peak Summary of R e p l i c a t e A n a l y s i s of an 
Aroclor 1242:1248:1254:1260 Mixture 

Concentration (ng) of Peak Number 
Sample ng 
# 1 ( 5 ) 1 4 (8) 5 (9) 6 (10) 63 (67) Total 

17 0.054 0.020 0.014 0.106 .0933 4.38 

18 0.058 0.020 0.014 0.101 .0956 4.19 

19 0 2 0.016 0 2 0.104 .0929 4.22 

20 O2 0.020 0.020 0.101 .1030 4.10 

(SIMCA Variable Number) 
o Not Detected by PEAK-11 Integration Program 

To i l l u s t r a t e the influence of changes i n sample composition 
r e s u l t i n g from f a i l u r e to detect c o n s t i t u e n t s because of 
decreasing concentration or s e n s i t i v i t y , we o f f e r a hypothetical 
set of data i n histogram form ( F i g u r e 9). This histogram 
i l l u s t r a t e s how the r e s u l t s of a n a l y z i n g of a mi x t u r e of f i v e 
compounds would change as a r e s u l t of varying the s e n s i t i v i t y of 
the d e t e c t i o n system or from sample d i l u t i o n at a f i x e d 
s e n s i v i t y . 

The changes i n f r a c t i o n a l c o m p o s i t i o n r e s u l t i n g from 
a n a l y z i n g the sample under d i f f e r e n t s e n s i t i v i t i e s i n t h i s 
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STALLING ET AL. Isomer Specific Analysis of PCBs 

Sample * in TRS 3/6/82 

18 
17 

20 

19 

T h e t a - 1 

F i g u r e 7. P r i n c i p a l Components P l o t D e r i v e d f r o m 
F r a c t i o n a l C o m p o s i t i o n R e p l i c a t e A r o c l o r A n a l y s i s 
( F i g u r e 2 ) .  P
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214 TRACE RESIDUE ANALYSIS 

PEAK* s VARIABLE* - 4 

5 

CM 
I 

< 
I -
LU 
CD 

9 

30 
8 

16 
6MMM MMMM 58 MM 

32 1_MMMMM< 12 

22 24 
463M7 39 

BETA-1 

F i g u r e 8 . P l o t of V a r i a b l e L o a d i n g s (Betas) i n 
A r o c l o r M i x t u r e s . 
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12. STALLING ET AL. Isomer Specific Analysis of PCBs 215 

example are summarized i n Table I I I . The hypothetical t o t a l of 
the c o n s t i t u e n t s i s 30 a r b i t a r y u n i t s and c o r r e c t r e s u l t s are 
obtained at s e n s i t i v i t y l e v e l I. Results determined at each of 
the lower s e n s i t i t i e s are presented i n b r a c k e t s . S e n s i t i v i t y 
decreases from l e v e l I to IV and the dashed l i n e s represent the 
baseline at the d i f f e r e n t s e n s i t i v i t y l e v e l s . These r e s u l t s are 
commonly encountered when c o n c e n t r a t i o n data are expressed as 
proportions and t h i s example serves to point out the importance 
of c o n t r o l l i n g t h i s problem when the examining f r a c t i o n a l 
c o m p o s i t i o n data. I t i s shown l a t e r that SIMCA i s able to 
accomodate for t h i s type of change, i f the change i s a consistent 
function of concentration. 

* 

SENSITIVITY * * 
LEVEL IV — * * [ 6] 

* * * 
I I I — * * * [12] 

* * * * 
I I — * * * * [20] 

* * * * * 
I * * * * * [3Q] 

COMPONENT # 1 2 3 4 5 
COMPONENT CONC. 8 10 6 4 2 

Fi g u r e 9. Example of changes i n com p o s i t i o n r e s u l t i n g from 
decreased s e n s i t i v i t y . 

Table I I I . Changes i n f r a c t i o n composition of a hypothetical 
mixture due to decreasing concentration or decreasing 
s e n s i t i v i t y . 

SENSITIVITY FRACTIONAL COMPOSITION OF COMPONENT # 
LEVEL 1 2 3 4 5 TOTAL 

I .266 .333 .24 .133 .067 30 

I I .333 .400 .20 .10 ND1 20 

I I I .333 .50 .166 ND ND 12 

IV .333 .667 ND ND ND 6 

ND=Assumed to be not detected due to l i m i t e d s e n s i t i v i t y 

To f u r t h e r i l l u s t r a t e the u t i l i t y of the SIMCA method we 
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216 TRACE RESIDUE ANALYSIS 

examined an even more complex s e l e c t i o n of A r o c l o r samples i n 
which both composition and concentration of samples were modeled. 
Data f o r t h i s i l l u s t r a t i o n were from a group of 27 samples of 
four A r o c l o r types, where three A r o c l o r s were analyzed over a 
range of concentrations (Table IV). 

In t h i s set of samples, the c o n c e n t r a t i o n data f o r the 
Aroclor 1254 concentration series were from another set of data 
i n which there were 105 constituents instead of the usual 69; In 
th i s study, the concentration of the f i r s t 69 peaks of the t o t a l 
of 105 were s e l e c t e d . A sample of A r o c l o r 1254 having the same 
69 constituents as Aroclor 1248 and 1260 was included to test the 
d i s c r i m i n a t i o n a b i l i t y when concentration and composition were 
being modeled. 

The data were modeled by a p r i n c i p a l components model with 
three components. The s t a t i s t i c a l r e s u l t s method (25, 31) are 
presented i n Table IV and V. In addition, the measured t o t a l PCB 
concentration i s included i n Table IV. One of the three sets of 
two-dimension plots (Theta 1 vs Theta 2) i s presented i n Figure 
10. I n d i v i d u a l samples of a given A r o c l o r were d i s t r i b u t e d 
r e g u l a r l y i n these p l o t s and samples were ordered a c c o r d i n g to 
concentration. The sums of squares decreased from 4,360 to 52.4 
(Table V.) and approximately 88 percent of the standard deviation 
was explained by the three term component model. 

Because of t h i s s t r u c t u r e i n the p l o t s , three d i m e n s i o n a l 
representation of the data was investigated. The three p r i n c i p a l 
components score terms ( t ^ , t^2> a n d -tk3^ ^ r o m t h e s t a t i s t i c a l 
analysis of t h i s data set were used as p l o t t i n g coordinates f o r 
each sample (Table IV). The data were d i s p l a y e d and r o t a t e d 
about the axes i n 3-D u s i n g a D a z z l e r TV g r a p h i c s b o a r d 
(Cromemco, Inc., Mountain View, CA). Following t h i s display of 
the data, the coordinates f o r each sample were used to generate a 
3-D p l o t w i t h a Texas Instruments P l o t t e r d r i v e n by a MUMPS 
program i n the laboratory data base. 

Two g r a p h i c s v i e w p o i n t s were s e l e c t e d t h a t a l l o w e d us to 
d i s c e r n the three c l u s t e r i n g of A r o c l o r s as l i n e s ( F i g u r e 11). 
The s i n g l e A r o c l o r 1254 sample ( p o i n t "3") t h a t was composed of 
data from an a l t e r n a t e set of data i s r e a d i l y observed i n these 
3-D plots as not being s i m i l a r to any of the other sample types. 

C l a s s i f i c a t i o n To i l l u s t r a t e the use of SIMCA i n c l a s s i f i c a t i o n 
problems, we a p p l i e d the method to the data f o r 23 samples of 
Aroclors and t h e i r mixtures (samples 1-23 i n Appendix I ) . In 
t h i s example, the A r o c l o r content of the three samples of 
transformer o i l was unknown. Samples 1-4, 5-8, 9-12 and 13-16, 
were Aroclors 1242, 1248, 1254, and 1260, respectively. Samples 
17-20 were 1:1:1:1 mixtures of the A r o c l o r s . A p p l i c a t i o n of 
SIMCA to these data generated a p r i n c i p a l components score plo t 
( F i g u r e 12) that shows the t r a n s f o r m e r o i l i s s i m i l a r , but not 
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STALLING ET AL. Isomer Specific Analysis of PCBs 

Theta-1 
( F I R S T 6 9 O F 1 0 5 P E A K S ) 

F i g u r e 10. P r i n c i p a l Components P l o t ( T h e t a 1 vs 
Theta 2) from A r o c l o r C l a s s e s ( T a b l e IX). 
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218 TRACE RESIDUE ANALYSIS 

T3 

# 
12 

Tl 
3 

* Aroclor 1248 Series 
$ 1:1:1:1 Aroclor Mix 
# Aroclor 1254 Series (69/105) 
2 1248 Test 
3 1254 (69) Test 

F i g u r e 11. 3-D V i e w s of Theta V a l u e s D e r i v e d f r o m 
PC A n a l y s i s of A r o c l o r s . Key: * = A r o c l o r 1248; 
6 = 1:1:1:1 M i x t u r e ; # = A r o c l o r 1254 (69/105 p k s ) ; 
2 = A r o c l o r 1248 ( t e s t ) ; and 3 = A r o c l o r 1254. 

T3 

T2 
3 
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STALLING ET AL. Isomer Specific Analysis of PCBs 219 

9.9 

8.3 

6.6 

5.0 

3.3 

1254 

1:1:1:1 

USED TRANSFORMER OIL 

1260 

1248 

1242 

I I 
-10.27 -7.84 -5.41 -2.98 -0.55 1.88 4.31 6.74 9.17 11.60 

THETA 1 

F i g u r e 12. P r i n c i p a l Components P l o t f r o m F i v e 
A r o c l o r s C l a s s e s and a Used T r a n s f o r m e r F l u i d (most 
s i m i l a r t o A r o c l o r 1260). 
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220 TRACE RESIDUE ANALYSIS 

i d e n t i c a l , to A r o c l o r 1260. A more d e t a i l e d d i s c u s s i o n of 
c l a s s i f i c a t i o n using these data i s presented by Dunn et a l . (39). 

Table IV. Theta Values from a Three Component P r i n c i p a l 
Components C l a s s Model (A=3) and T o t a l Measured T o t a l 
Concentration of PCBs. 

Aroclor and 
SAMPLE # THETA 1 THETA 2 THETA 3 CONC. 

1248 
1 -0.813 -0.003 0.227 6 

1254 
2 -0.180 0.11 -1.39 6 

1248 
3 0.524 0.621 0.21 0.76 
4 0.351 0.541 0.216 1.58 
5 0.352 0.541 0.211 1.61 
6 -0.0173 0.369 0.211 3.46 
7 -0.0641 0.352 0.225 5.63 
8 -0.645 0.077 0.22 6.56 

10 -1.32 -0.246 0.231 9.85 
11 -1.29 -0.236 0.231 9.74 
9 -1.52 -0.334 0.245 10.9 

12 -2.07 -0.592 0.240 13.7 
1:1:1:1 
mixture 

19 0.486 0.570 0.048 1.48 
14 0.442 0.546 0.038 1.76 
13 0.255 0.418 -0.075 3.22 
18 0.264 0.430 -0.089 3.24 
17 0.167 0.370 -0.14 3.89 
15 0.0237 0.273 -0.253 5.11 
20 -0.587 -0.099 -0.629 9.7 
1 6 i -0.603 -0.122 -0.67 9.99 

12541 

24 0.721 0.513 0.173 0.80 
26 0.733 0.41 0.159 1.38 
25 0.839 -0.139 0.126 3.82 
23 0.866 -0.353 0.112 4.76 
27 1.08 -1.64 0.000 10.7 

Data Set Obtained from f i r s t 69 of 105 Isomers Quantitated 

Prediction of Composition of Unknown Samples PLS. 

Because many samples are analzyed i n which the analyst i s 
interested in determining which Aroclor mixtures are present, we 
applied the PLS method to the data obtained from the analysis of 
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12. STALLING ET AL. Isomer Specific Analysis of PCBs 221 

the used t r a n s f o r m e r f l u i d p r e v i o u s l y d i s c u s s e d . In order to 
es t i m a t e the A r o c l o r content of the p r e v i o u s l y c l a s s i f i e d the 
used t r a n s f o r m e r f l u i d p r e v i o u s l y d i s c u s s e d . In order to 
es t i m a t e the A r o c l o r content of the p r e v i o u s l y c l a s s i f i e d the 
used t r a n s f o r m e r f l u i d p r e v i o u s l y d i s c u s s e d . In order to 
es t i m a t e the A r o c l o r content of the p r e v i o u s l y c l a s s i f i e d 
transformer o i l samples, we obtained a d d i t i o n a l data from the 
a n a l y s i s of A r o c l o r s of v a r y i n g p r o p o r t i o n s . In Appendix I , the 
data are ordered i n an arr a y and the f i r s t f o u r v a r i a b l e s 
designate the f r a c t i o n a l p a r t of each A r o c l o r composing the 
sample i n the order 1242, 1248, 1254, and 1260. This composition 
data r e p r e s e n t s the Y-block and the 69 peaks represent the X-
block of data analyzed with the PLS-2 program. 

Table V. S t a t i s t i c a l Summary for A=3 P r i n c i p a l Components SIMCA 
Analysis of Aroclor Samples. 

StepPar. A NDF SS SD 1 -SD/SDY SS(TETA) ITET 

0 0 1862 4.36E+03 1.53E+00 0.000 0. 0 
1 Alpha 0 1794 2.25E+03 1.12E+00 0.268 0. 
2 Beta- 1 1700 5.83E+02 5.86E-01 0.617 1.7E+03 14 
3 Be t a - 2 1608 1.36E+02 2.91E-01 0.810 4.5E+02 9 
4 Beta- 3 1518 5.24E+01 1.86E-01 0.879 8.4E+01 17 

The samples of unknown composition—21-23 and samples 1-20, 
24-34 ( A p p e n d i x I) were t h o s e of A r o c l o r s of v a r i a b l e 
composition. Variables 5-73 are isomer concentrations (Variable 
74, the t o t a l PCB c o n c e n t r a t i o n i n ppm was not i n c l u d e d i n the 
a n a l y s i s ) . V a r i a b l e s 5-73 represent the f r a c t i o n a l composition 
or isomer p r o p o r t i o n a l c o n c e n t r a t i o n v a l u e s . R e p r e s e n t a t i v e 
concentration histograms of the data set are presented i n Figure 
13. Four PLS components were extracted and then used to estimate 
the Aroclor content of the unknowns and of a standard sample (No. 
24). The Aroclor standard i s a mixture of three Aroclors i n the 
r a t i o of 033:0.33:0:0.33. Chromatograms of the samples for which 
the PLS e s t i m a t e s were made (Table VI) were s i m i l a r when 
compared to a chromatogram of a s i m i l a r mixture of standards. 

The p a r t i a l l e a s t squares (PLS) method has been a p p l i e d to 
s t r u c t u r e a c t i v i t y problems by Wold ej: a l . (38). R e c e n t l y , 
Lindberg et a l . (40) employed t h i s approach to resolve mixtures 
of humic a c i d and l i g n i n s u l f o n a t e on the b a s i c of f l u o r e s c e n c e 
spectra. 

This example demonstrates that the PLS method gives a stable 
e s t i m a t e of the Y-block, even though there are many more X-
variables than samples, a condition that removes the p o s s i b i l i t y 
of applying m u l t i p l e regression. Another advantage of the method 
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.125 

.1 

.875 

.86 

.825 _ 

a 

AROCLOR 1254 C*9> 
2 . 9 0 3 ng 

18 15 28 25 
L-il 

48 45 58 55 

CO 
O 
0. a o o 

.125 _ 

.1 -

.875 

P«ok * 

AROCLOR 1254 + 1260 I:J 
3 . 0 4 4 n 0 

L, J l , , , 1 J i l l i l j l l i l l , . , 11 

175 _ 
.16 
125 -
876 
.86 -

8 

18 16 28 25 38 36 48 45 
P.ak • 

AROCLOR 1260 C#13) 
3 . 1 8 5 ng 

88 66 78 

,1 ll .1, 

.16 

.126 _ 

.1 

.875 

.85 _ 

.826 _ 

a 

28 26 3 8 3 6 4 8 4 6 5 8 6 6 
P«ok • 

TRANSFORMER O I L C*2I) 
1862 ng 

ll.,..lllmi. 

l l . l M Jlii 
6 18 16 28 26 38 36 48 

P«ok * 
66 68 66 78 

F i g u r e 13. F r a c t i o n a l C o m p o s i t i o n H i s t o g r a m s of Used 
T r a n s f o r m e r F l u i d and A r o c l o r s . 

 P
ub

lic
at

io
n 

D
at

e:
 J

ul
y 

15
, 1

98
5 

| d
oi

: 1
0.

10
21

/b
k-

19
85

-0
28

4.
ch

01
2



12. STALLING ET AL. Isomer Specific Analysis of PCBs 223 

that makes i t a t t r a c t i v e f o r use i n a n a l y t i c a l problems i s i t s 
computational e f f i c i e n c y and s i m p l i c i t y , which makes i t possible 
to use microcomputers and minicomputers to c a r r y out such 
c a l c u l a t i o n s • 

The SIMCA software i s a v a i l a b l e i n two forms, both developed 
by Wold (25., 31): 1) an i n t e r a c t i v e , F o r t r a n v e r s i o n which runs 
on Control Data Corporation (CDC) machines, and 2) an i n t e r a c t i v e 
version, SIMCA-3B. A d d i t i o n a l i n f o r m a t i o n on these programs i s 
contained i n Appendix I. Only the SIMCA-3B version contains the 
CPLS-2 program used f o r PLS analysis. 

Table VI. F r a c t i o n a l Composition of Aroclors i n Transformer 
O i l s Estimated by p a r t i a l least squares. 

Aroclor 
Sample 
number 1242 1248 1254 1260 

21 .03 .03 .08 .84 

22 .03 .03 .08 .84 

23 .03 .03 .08 .84 

25 .37 
(.33) 1 

.36 
(.33) 

.05 
(.00) 

.24 
(.33) 

i A c t u a l composition 

Environmental Applications 

To i l l u s t r a t e the environmental a p p l i c a t i o n of the SIMCA method 
we examined a set of isomer s p e c i f i c analyses of sediment 
samples. The data examined were d e r i v e d from more than 200 
sediment samples taken from a study s i t e on the Upper M i s s i s s i p p i 
River (41). These a n a l y t i c a l data were transferred v i a magnetic 
tape from the l a b o r a t o r y data base to the Cyber 175 computer 
where p r i n c i p a l component analysis were conducted on the isomer 
concentration data (ug/g each isomer). 

The f i r s t p r i n c i p a l component v a l u e s (Theta 1) f o r each 
sample were determined and these values were correlated with the 
t o t a l PCB concentration (Figure 14) recorded for each sample i n a 
separate computer data base that contained other environmental 
data such as hydrology and sediment t e x t u r e . The r e s u l t s 
indicated that c e r t a i n samples deviated by factors of about two. 
Upon examining the sample records, the recorded d i l u t i o n values 
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0.024 

<U 0.006 

H 

« 3 
9 

1 % R SQUARE: 0.85 
3 3 

,£ 6 • 
570 6 

SI8U 
sse« 
C57 

54 DILUTION ERROR 

0.00 0.03 O.Of 0.12 0.1S 0.18 0.24 0.27 0.30 0.33 0.36 

Total PCB Concentration, ppm 

F i g u r e 14. C o r r e l a t i o n of Theta 1 v s . T o t a l PCB 
C o n c e n t r a t i o n Measured i n 201 Lake O n a l a s k a Sediment 
Samples. P l o t symbol i s s i t e number. 
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12. STALLING ET AL. Isomer Specific Analysis of PCBs 225 

for samples designated with an ast e r i s k i n Figure 14 were found 
to be i n error by a factor of 2. When the values were corrected, 
these samples f e l l on the c o r r e l a t o n l i n e . L i t t l e or no 
co r r e l a t i o n of the second p r i n c i p a l component value existed w i t h 
t o t a l composition (Figure 15). 

An examination of the sample d i s t r i b u t i o n s observed i n 
p r i n c i p a l components projections using isomer concentration data 
expressed as f r a c t i o n a l composition, as w e l l as the c l u s t e r i n g of 
samples by s i m i l a r values of t h e i r second p r i n c i p a l component 
score term, r e v e a l e d c o n s i s t e n t differences existed i n sample 
p r o f i l e s . The next s t e p i n t h i s d a t a e v a l u a t i o n i s to 
s t a t i s t i c a l l y analyze c o r r e l a t i o n s of the PLS components from 
analyses with the external variables such as percent sand, clay 
and s i l t , and t o t a l o r g a n i c m a t t e r i n sam p l e s . These 
correlations may play an important r o l e i n i d e n t i f y i n g f a c t o r s 
r e s u l t i n g i n changes i n PCB co m p o s i t i o n and enable one to more 
c l e a r l y understand the forces d e t e r m i n i n g the d i s t r i b u t i o n and 
fate of PCB i n a complex ecosystem. 

1.009 -

1.008 

1.007 

I.005 

1.004 

1.003 

1.002 

>.001 

).000 \ 

>.O01 

I CI 6 9 
U 6 t I 

RI966 
G ! 1U 7986 COO 9 

C56S7 « 1 6 IH 9137R 
> P 6 8 S 7 « 8 U 769 7 18 9 

86L 1U 1 1 61 
R 6 3 

1.004 

1.005 

.00 0.C3 C.06 >.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30 0.33 

Total PCB Concentration, ppm 

F i g u r e 15. P l o t of Theta 2 v s . T o t a l PCB C o n c e n t r a 
t i o n measured i n 201 Lake O n a l a s k a Sediment Samples. 
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226 TRACE RESIDUE ANALYSIS 

Appendix I . 

This appendix contains some of the data generated for the SIMCA 
and PLS analyses. The complete data set i s a v a i l a b l e from the 
authors. Upon request the data w i l l be pr o v i d e d on 8" s i n g l e 
d e n s i t y s i n g l e s i d e d f l o p p y d i s k s i n IBM 3740 format f o r CP/M 
based systems or on 5 1/4" double s i d e d double d e n s i t y f l o p p y 
d i s k f o r the IBM/PC or other MS/DOS based computers. The 
requestor, however, must supply a properly formated floppy disk. 

Software A v a i l a b i l i t y . The SIMCA software i s a v a i l a b l e i n two 
forms, both developed by Wold (25): 1) an i n t e r a c t i v e , F o r t r a n 
v e r s i o n which runs on C o n t r o l Data C o r p o r a t i o n (CDC) machines. 
The second set of programs are an i n t e r a c t i v e microcomputer 
version, SIMCA-3B, are av a i l a b l e from P r i n c i p a l Data Components, 
2505 Shepard Blvd., Columbia, MO 65201. The SIMCA-3B p a t t e r n 
r e c o g n i t i o n programs i n c l u d e s the CPLS-2 program used f o r PLS 
a n a l y s i s and are a v a i l a b l e f o r CP/M ( D i g i t a l Research, P a c i f i c 
Grove, CA) and MS-DOS (Microsoft Corporation, Bellueve, WA) for 
8088 or 8086 based microcomputers. 

The F o r t r a n v e r s i o n used i n t h i s study was l o c a t e d at the 
C o m p u t e r C e n t e r a t t h e U n i v e r s i t y o f I l l i n o i s a t 
Champaign/Urbana. The Fortran version i s useful for analysis of 
very l a r g e data s e t s , i.e. 400 x 70 m a t r i c e s . The SIMCA-3B 
v e r s i o n f o r microcomputer systems i s i n t e r a c t i v e , menu driven, 
and i s applicable to intermediate sized data sets and runs under 
CPM or MS-DOS. In t h i s study, the SIMCA-3B program—CPLS-2, was 
used to obtain the r e s u l t s i n the PLS examples discussed. 

An e a r l i e r Fortran version of SIMCA i s a v a i l a b l e f o r use i n 
the ARTHUR package av a i l a b l e from Chemical Information Systems, 
Box 2227, F a l l s Church ,VA. Recen t l y , the o p e r a t i n g system was 
changed on the CDC Cyber computer system at the U n i v e r s i t y of 
I l l i n o i s . The new o p e r a t i n g system does not a l l o w the e a r l i e r 
SIMCA-2T version used to perform the environmental analyses to 
operate c o r r e c t l y . The authors expect t h a t a new v e r s i o n of 
SIMCA w i l l be i n s t a l l e d that w i l l f u n c t i o n w i t h the c u r r e n t 
operating system i n use on the CDC Cyber computer. 
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12. STALLING ET AL. Isomer Specific Analysis of PCBs 227 

P a r t i a l Summary of Data from the Gas Chromatographic Analysis ot 
Aroclor, Aroclor Mixtures, and Transformer O i l analyses. 

Table 1. Identity of Samples Analyzed—Aroclor 1242, 1248, 1254, 
1260, Their Mixtures and a Transformer O i l . Data are included i n 
th i s appendix for sample numbers designated with an ast e r i k . 

SIMCA ID Description 
1* Aroclor 1242 Replicate 
2 Aroclor 1242 Replicate 
3 Aroclor 1242 Replicate 
4 Aroclor 1242 Replicate 

5* Aroclor 1248 Replicate 
6 Aroclor 1248 Replicate 
7 Aroclor 1248 Replicate 
8 Aroclor 1248 Replicate 
9* Aroclor 1254 Replicate 

10 Aroclor 1254 Replicate 
11 Aroclor 1254 Replicate 
12 Aroclor 1254 Replicate 

13* Aroclor 1260 Replicate 
14 Aroclor 1260 Replicate 
15 Aroclor 1260 Replicate 
16 Aroclor 1260 Replicate 

17* Aroclor42:48:54:60 1:1:1:1 
18* Aroclor42:48 :54:60 1:1:1:1 
19* Aroclor42:48:54:60 1:1:1:1 
20* Aroclor42:48:54:60 1:1:1:1 

21* Used Transformer O i l Replicate 
22* Used Transformer O i l Replicate 
23* Used Transformer O i l Replicate 

24 Aroclor 42:48:54:60 1:1:0:1 
25 Aroclor 42:48:54:60 1:0:1:1 
26 Aroclor 42:48:54:60 0:1:1:1 
27 Aroclor 42:48:54:60 1:1:0:0 
28 Aroclor 42:48:54:60 1:0:1:0 
29 Aroclor 42:48:54:60 1:0:0:1 
30 Aroclor 42:48:54:60 0:1:1:0 
31 Aroclor 42:48:54:60 0:0:1:1 
32 Aroclor 42:48:54:60 0:1:0:1 
33 Aroclor 42:48:54:60 1:1:1:1 
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Z Z 6 TRACE RESIDUE ANALYSIS 

Table I I . Data Matrix Organization for Aroclors and Samples. 

Data Matrix - Variable # 

Sample # TD code 

K 
6( 

11 
16 
21 
26 
31 
35 
41 
46 
51 
56 
61 
66 
71 

1242) 1 

peak 2 ) 2 
2(1248) 
7(peak 3) 

3(1254) 
8(peak 4) 

4 ( 1 2 6 0 ) 
9 

1 
10 

72 73(peak 69) 74 3(Total cone.) 

Weight f r a c t i o n each Aroclor i n sample v a r i a b l e 1-4 
^Variables 5-73 are f r a c t i o n a l concentration of each PCB isomer 
'Variable 74 designates t o t a l PCB concentration i n sample 

Table III.Representative Analyses of Aroclors, Their Mixtures and 
a Transformer O i l Sample. Refer to Table 2 f o r key to data 
organization. 

Sample # ID code 
1 1 42 

100 0 0 0 .3318 
0 .03722 .1324 .1501 .6295 
.8347 .3023 .3691 .1762 0 
.07662 .07048 .02987 .5528 1.14 
.2134 .3437 .3375 .3169 .09121 
.08603 .02791 .07272 .1301 .1613 
.04002 .0355 .1661 .08603 .2138 
.1051 .09709 0 .03421 .02422 
.01593 .02423 .02633 0 0 
0 0 0 .01582 .01318 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 7.511 
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12. STALLING ET AL. Isomer Specific Analysis of PCBs 229 

Table I I I . Continued 
5 5 48 

0 100 0 0 
0 0 0 .02243 
.3688 .09205 .1105 .07285 
.1108 .08407 .03458 .3342 
.09049 .6112 .4933 .5239 
.1164 .04218 .1092 .2177 
.1572 .1294 .3208 .1477 
.1657 .1605 0 .1479 
.06115 .09849 .1533 0 
0 0 0 .09543 
0 0 0 0 
0 0 0 0 
.0009057 0 0 0 
0 0 1.463E-05 0 
0 6.426E-05 0 6.257 

9 9 54 
0 0 100 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 .2006 .03684 .07303 
.001386 0 0 .01534 
.2877 .1281 .06263 .013 97 
.003889 .03496 .03043 .3352 
.07539 .1657 .3222 .04839 
.1595 .07247 0 .1939 
.1752 .02599 .1777 .01992 
.005103 .002069 .001326 0 
.02406 0 .007326 .0102 
.001136 0 0 0 
0 0 0 2.903 

13 13 60 
0 0 0 100 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
.1134 0 0 0 
0 .0004755 .06472 .1251 
0 .006675 .02628 .1837 
.3606 .07934 .07441 .0009664 
.5124 .01567 .2802 .01874 
.2944 .08182 .04352 0 
.01198 .02128 .3146 .1039 
.01951 .02727 .03142 .02323 
0 .04784 .009139 3.185 

.02185 

.04143 
0 
.4488 
.1222 
.05379 
.3446 
.09148 
0 
.05943 
0 
0 
.0003501 
0 

0 
0 
0 
0 
0 
0 
.01731 
.09876 
.007758 
.06609 
0 
.002222 
0 
0 

0 
0 
0 
0 
0 
.02807 
0 
0 
.02169 
0 
.1711 
.006068 
.06354 
.002931 

Table I I I . Continued on next page 
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2 3 0 TRACE RESIDUE ANALYSIS 
Table I I I . Continued 

17 17 M4 
25 25 25 25 .05351 
0 .007108 .02049 .01411 .1062 
.2019 .06352 .0797 .04155 0 
.03203 .02606 .01205 .1385 .2308 
.04948 .2394 .156 .1621 .03699 
.03584 .01305 .02929 .06368 .03058 
.1765 .07449 .09968 .04474 .09625 
.04801 .05987 .03558 .1951 .05449 
.04109 .08646 .1563 .08263 .01062 
.1798 .05681 .02459 .09232 .03886 
.2308 .01501 .1661 .01465 .06061 
.1034 .03089 .01593 0 .002988 
.01464 .007318 .103 .04175 .02351 
.007217 .009673 .01155 .007575 .0004781 
0 .01765 

18 18 M4 
.002694 4.385 

25 25 25 25 .0582 
0 .009318 .02033 .01366 .1012 
.1923 .06195 .07673 .037 57 0 
.02852 .0246 .01163 .1362 .2158 
.04677 .2254 .1456 .1597 .03718 
.03311 .02247 .03049 .06241 .02041 
.1754 .06777 .0975 .04221 .09346 
.04581 .0564 .03511 .1943 .05288 
.03923 .08372 .1494 .07 889 .01055 
.1755 .05492 .02173 .0869 .03402 
.2197 .01502 .1514 .01265 .05624 
.09693 .02829 .01499 0 .002718 
.01202 .006532 .09292 .03756 .02181 
.006168 .008577 .01005 .007134 0 
0 .01566 

19 19 M4 
.002565 4.186 

25 25 25 25 0 
0 .00758 .01591 0 .1035 
.1979 .06332 .07692 .03998 0 
.02768 .02566 .01181 .139 .2205 
.04811 .2343 .1521 .1627 .0366 
.03671 .02365 .03228 .06273 .01992 
.1798 .07212 .09911 .04306 .0963 
.04658 .05797 .03613 .198 .05478 
.04075 .08714 .1496 .08243 .01029 
.1816 .05516 .02203 .09154 .03546 
.2255 .01544 .1564 .0134 .05881 
.09807 .02874 .01439 0 .002419 
.01253 .00762 .09556 .03932 .02241 
.006722 .009386 .01079 .006948 0 
0 .0158 .001706 4.22 
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12. STALLING ET AL. Isomer Specific Analysis of PCBs 

Table I I I . Continued 

25 
0 
.1888 
.029 
.04563 
.03259 
.1742 
.04368 
.03871 
.1776 
.2167 
.09493 
.01184 
.006812 
0 

0 
0 
21.21 
0 
9.456 
5.23 
67.07 
16.32 
7.393 
169.9 
259.6 
141.5 
9.323 
10.12 
0 

0 
0. 
18.84 
0 
9.354 
4.054 
68.15 
15.17 
6.871 
167.6 
258.6 
140.7 
8.846 
10.08 
0 

20 20 M4 
25 
0 
.05618 
.02383 
.2313 
.0219 
.07348 
.05558 
.08279 
.05508 
.0147 
.0272 
.007262 
.008346 
.01538 
21 21 TO 

0 
0 
9.022 
0 
29.72 
0 
11.2 
19.48 
2.339 
41.68 
10.67 
39.53 
8.306 
18.16 
27.11 
022 
0 
0 
6.861 
0 
28.37 
0 
11.62 
17.98 
2.331 
42.73 
10.65 
39.08 
8.124 
17.99 
26.88 

22 TO 

25 
.01953 
.07373 
.01114 
.1486 
.03021 
.09438 
.03355 
.1486 
.02429 
.1513 
.01298 
.09327 
.01053 
.001 846 

0 
0 
7.668 
0 
18.87 
3.79 
13.59 
25.79 
36.12 
17.97 
150.3 
20.73 
156.3 
20.98 
6.732 

0 
0 
6.402 
0 
16.44 
0 
13.79 
24.69 
36.60 
18.34 
150.1 
20.85 
156.7 
20.90 
6.672 

25 
.02258 
.03659 
.1375 
.159 
.06214 
.04086 
.1881 
.07911 
.08819 
.01244 
0 
.03842 
.006725 
4.101 

0 
0 
4.709 
22.01 
16.88 
6.906 
0 
90.13 
83.84 
19.92 
11.58 
9.535 
62.34 
10.67 
1962 

0 
0 
4.596 
20.97 
16.38 
7.090 
0 
89.59 
82.98 
18.26 
11.48 
9.035 
61.77 
10.63 
1929. 

231 

0 
.1012 
0 
.2149 
.03436 
.0217 
.09305 
.05164 
.008697 
.03461 
.05699 
.002228 
.02261 
0 

0 
9.761 
0 
37.65 
0 
0 
13.89 
10.21 
9.548 
7.416 
82.64 
0 
39.39 
0 

0 
7.651 
0 
36.33 
0 
0 
13.65 
8.900 
9.401 
69.10 
81.87 
0 
39.50 
0 

Table I I I . Continued on next page 
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232 TRACE RESIDUE ANALYSIS 

Table III. Continued 
023 23 TO 

0 0 0 0 0 
0 0 0 0 9.198 
20.07 8.285 5.973 4.554 0 
0 0 0 21.05 33.38 
8.918 27.98 15.53 15.96 4.408 
0 0 0 6.221 0 
63.37 10.25 13.64 0 12.98 
15.78 19.00 24.82 86.27 8.967 
0 2.185 37.18 79.38 9.282 
161.7 39.50 17.65 20.34 6.783 
244.7 9.602 141.9 10.87 77.59 
131.9 36.90 19.59 8.435 0 
8.368 7.868 146.8 56.95 36.46 
9.241 16.73 19.50 9.806 0 
0 24.92 6.579 1835 
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13 
From Data to Information to Knowledge 
The Problems of Metamorphosis 

C. ZERVOS 

Pharmaceutical Research and Testing, National Center for Drugs and Biologics, U.S. Food 
and Drug Administration, Washington, DC 20204 

Rational control of health and 
environmental risks from technical 
development requires scientific 
knowledge which must be acquired through 
the orderly process of the scientific 
method of inquiry. Contrary to widely 
held opinions the latter is no less 
subjective than other rational human 
endeavors which require decisions under 
uncertainty. Indeed, to be applied, the 
method requires a value system which in 
ordinary research is supplied by the 
various scientific disciplines. Because 
of differences among the disciplinary 
value systems problems often arise in 
the interdisciplinary settings of 
efforts to control risks from technical 
development. Metrics, the concepts, 
theory, and practice of measurement is 
suggested here as a way to deal with 
such problems. 

The terms data, information, and knowledge are often 
used interchangeably f o r diverse purposes by 
researchers i n a l l s c i e n t i f i c d i s c i p l i n e s . In the 
s c i e n t i f i c e n t e r p r i s e , however, they are not 
interchangeable, despite arguments to the contrary. As 
a matter of f a c t , Chemometrlcs, the subject of t h i s 
Symposium, may spring at l e a s t i n part from the r e a l 

This chapter not subject to U.S. copyright. 
Published 1985, American Chemical Society 
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2 3 6 TRACE RESIDUE ANALYSIS 

d i f f e r e n c e s among these terms. The International 
Chemometrlcs Society, f o r instance, declares that: 

"Chemometrlcs i s the chemical d i s c i p l i n e that 
uses mathematical and s t a t i s t i c a l methods (a) to 
design and s e l e c t optimal measurement procedures 
and experiments, and (b) to provide maximum 
chemical information by analyzing chemical 
data."U) 

The d i f f e r e n c e s among the three terms are not 
j u s t of t h e o r e t i c a l i n t e r e s t . They touch nearly every 
aspect of our d a i l y l i v e s because they are c e n t r a l to 
the functions of the agencies that protect the p u b l i c 
health and the environment. S p e c i f i c a l l y , to be 
c r e d i b l e , these agencies must base t h e i r actions on 
"accepted" s c i e n t i f i c knowledge. Consequently, they 
c o l l e c t enormous amounts of experimental data. These 
data, however, are of l i t t l e use u n t i l they are f i r s t 
converted to s c i e n t i f i c information and then placed i n 
the context of other relevant s c i e n t i f i c information 
and thereby become knowledge. 

The standards f o r converting data to information 
are short-cut or "economy" s o l u t i o n s to the u n i v e r s a l 
problem of having to decide under uncertainty; these 
standards are based on convention, not on science. 
They vary from d i s c i p l i n e to d i s c i p l i n e and from time 
to time. As might be expected, although appropriate i n 
the context of t h e i r development, such standards are 
often l i k e l y to be incomplete or otherwise 
inappropriate f o r u n i v e r s a l a p p l i c a t i o n because they 
are value-laden r u l e s f o r making choices (vide i n f r a ) . 
Through use, however, they become valuable to those 
who use them. Often these standards a l s o become a 
cause of contention when, i n i n t e r d i s c i p l i n a r y 
s e t t i n g s , p r a c t i c a l knowledge must be extracted from 
experimental data. Thus, controversies often a r i s e 
when s c i e n t i s t s t r a i n e d i n d i f f e r e n t d i s c i p l i n e s 
Influence p u b l i c p o l i c i e s or make deci s i o n s based on 
the conversion standards i n which they were t r a i n e d . 

Here I w i l l examine at some length the problems 
with one such standard, namely, the odds f o r deciding 
"gating" hypotheses (vide i n f r a ) i n the l i f e science-
r e l a t e d d i s c i p l i n e s . This standard plays a p i v o t a l 
r o l e i n the assessment or management of t e c h n o l o g i c a l 
r i s k s and thus i s at the root of many controversies of 
the genre. I w i l l a l s o suggest that t h i s and s i m i l a r 
problems can be overcome by renewed emphasis on the 
proper use of the s c i e n t i f i c method of in q u i r y and by 
focusing a t t e n t i o n on Metrics, i . e . , the concepts, the 
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13. ZERVOS From Data to Information to Knowledge 237 

theory and the p r a c t i c e of measurement. The fo l l o w i n g 
examination of these problems w i l l include a b r i e f 
d e s c r i p t i o n of the s c i e n t i f i c method of inqu i r y ; an 
an a l y s i s of i t s value foundations; a d e s c r i p t i o n of 
representative examples of subjective choices i n 
science; an a n a l y s i s of the c l a s h of values during 
I n t e r d i s c i p l i n a r y i n v e s t i g a t i o n s of s o c i e t a l l y 
important t o p i c s ; and a recommendation to develop and 
expand the uses of Metrics to overcome the 
d i f f i c u l t i e s of making de c i s i o n s under uncertainty. 

The S c i e n t i f i c Method of Inquiry; An Overview. 

D i f f e r e n t authors describe the s c i e n t i f i c method of 
inquiry d i f f e r e n t l y depending on what they wish to 
emphasize<2rZ)• T h * fol l o w i n g d e s c r i p t i o n 
serves the purpose of t h i s paper. 

The s c i e n t i f i c research method c o n s i s t s of a 
c y c l i c sequence of experimental and l o g i c a l steps 
designed to y i e l d knowledge about the world by using 
conjecture and appeals to experience. The f i r s t step 
i n the sequence i s to d i v i d e the world i n t o a 
conveniently s i z e d part c a l l e d the "study system" and 
a complementary part c a l l e d the "environment." A study 
system and i t s complement are created by and f o r the 
convenience of the i n v e s t i g a t o r only. A study system 
can be of any s i z e and type as long as i t i s known 
where i n the universe i t comes from and exactly where 
i t f i t s i n i t . 

The second step i n the sequence eludes adequate 
d e s c r i p t i o n but i s important. I t i s an understatement 
to describe i t as a review, a n a l y s i s and resynthesis 
of accepted knowledge about a p a r t i c u l a r study system 
and about i t s r e l a t i o n to i t s environment. Yet, that 
i s a l l that can be s a i d to cha r a c t e r i z e t h i s second 
step besides acknowledging a c e n t r a l r o l e f o r 
i n t a n g i b l e s such as genius, i n t u i t i o n , s e r e n d i p i t y . 
Insights, e t c . 

Reviews and analyses of accepted knowledge are 
performed i n order to accommodate and a s s i m i l a t e 
information. Most epistemologists seem to agree that 
attempts at resyntheses aim at ever more general 
conjectures about the nature of the universe and the 
in t e r a c t i o n s between i t s parts. 

The properties of the conjectures that r e s u l t 
from successful resyntheses have been discussed 

Although opinions may d i f f e r about the 
r o l e of such conjectures and t h e i r c o n t r i b u t i o n to 
s c i e n t i f i c research, there i s agreement that they lead 
to development and a r t i c u l a t i o n of s t a t i s t i c a l 

 P
ub

lic
at

io
n 

D
at

e:
 J

ul
y 

15
, 1

98
5 

| d
oi

: 1
0.

10
21

/b
k-

19
85

-0
28

4.
ch

01
3



238 TRACE RESIDUE ANALYSIS 

hypotheses about the s p e c i f i c aspects of study 
systems - < 2., 4 , 8 ) 

A l l s c i e n t i f i c conjectures are speculations but 
not i d l e speculations. Rather, they are rooted i n 
accepted s c i e n t i f i c knowledge. This i s one of the 
pr o p e r t i e s that d i s t i n g u i s h s c i e n t i f i c conjectures 
from metaphysical schemes of knowledge. Another i s the 
requirement that, i n p r i n c i p l e , they be subject to 
r e f u t a t i o n by experimental observations 

Experiments designed to t e s t s p e c i f i c s t a t i s t i c a l 
hypotheses comprise the t h i r d step of the s c i e n t i f i c 
method of i n q u i r y . They c o n s t i t u t e appeals to 
experience regarding the v a l i d i t y of a s p e c i f i c 
s c i e n t i f i c conjecture. They provide f o r the c o l l e c t i o n 
of data, i . e . , numbers that r e f e r to, c h a r a c t e r i z e , or 
s p e c i f y the a t t r i b u t e s of a study system of i n t e r e s t . 

Data are the raw product of the s c i e n t i f i c method 
of i n q u i r y . By a n a l y s i s , refinement and reduction 
which c o l l e c t i v e l y c o n s t i t u t e the fourth step i n the 
sequence, data are converted to information about the 
nature of study systems. The conversion i s 
accomplished by the Neymann-Pearson process of 
s t a t i s t i c a l hypotheses testing(§). I f the 
c o l l e c t e d data are s u f f i c i e n t and pertinent enough to 
support r e j e c t i n g or accepting the s t a t i s t i c a l 
hypothesis under t e s t , a measurable(9.10) 
quantity of Information about the study system has 
been extracted. I f not, the data cannot be converted 
to information and therefore cannot contribute to the 
pool of accepted s c i e n t i f i c knowledge. 

The c y c l e begins again with new reviews, analyses 
and attempts at resynthesis. The continuing purpose i s 
to a s s i m i l a t e a l l a v a i l a b l e information i n c l u d i n g that 
which was newly acquired and to Incorporate i t i n t o a 
more consistent and more general scheme, an 
overarching conjecture of ever expanding scope. 

Attempts at resynthesis take the form of 
a r t i c u l a t i o n and t e s t i n g of new t h e o r i e s by the 
s c i e n t i f i c community. Theory t e s t i n g procedures are 
not as rigorous or as easy to describe as the 
Neymann-Pearson procedures f o r t e s t i n g s t a t i s t i c a l 
hypothesis. Rather, they are unstructured and they 
reserve a large r o l e f o r " s c i e n t i f i c I n t u i t i o n " and 
other s i m i l a r intangibles<}JJ . BuckCg.,7) 
has discussed the c r i t e r i a f o r having "meshed" 
establi s h e d or accepted knowledge and newly acquired 
information, i . e . , f o r having converted the l a t t e r to 
the former. These c r i t e r i a are (a) consistency of 
information from d i f f e r e n t sources and (b) the 
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13. ZERVOS From Data to Information to Knowledge 2 3 9 

emergence or furtherance of general p r A n c l p l e f 
which describe the observed behavior of the study 
system and p r e d i c t how i t w i l l behave under a 
s p e c i f i e d set of circumstances. Buck has a l s o noted 
that theory t e s t i n g has the foll o w i n g p r o p e r t i e s : i t 
can f u r t h e r substantiate what i s considered accepted 
knowledge about the study system; i t can r a i s e 
questions about i t ; i t always gives r i s e to new 
hypotheses which commence a new c y c l e of reasearch; 
often, i t necessitates a r e d e f i n i t i o n of the study 
system with i t s boundaries drawn e i t h e r more c l e a r l y 
or l e s s ; and on occasion, i t can change the 
perspectives of most s c i e n t i s t s about accepted 
knowledge(12). 

Because of the nature of the s c i e n t i f i c method. 
Metrics i s an indispensable t o o l of s c i e n t i f i c 
research. I t can provide rigorous i n d i c e s of the 
i n t e r n a l consistency and the p r e d i c t i v e power of 
"accepted knowledge" about study systems. Thus, i t can 
ai d with theory t e s t i n g . I t can a l s o provide rigorous 
i n d i c e s of the strength of c o r r e l a t i o n s between the 
a t t r i b u t e s of the study system and the external 
f a c t o r s that might influence i t . Thus, i t can a s s i s t 
with s t a t i s t i c a l hypothesis formulation and t e s t i n g . 

Although recog n i t i o n of i t s importance i n 
research i s s t i l l growing. Metrics i s not new. Indeed, 
over the past 400 years, i t has evolved i n t o an 
indispensable element of the s c i e n t i f i c method and i s 
now an i n t e g r a l part of i t . Thus, some of the concepts 
and the theori e s of Metrics are o l d . They were 
developed hand-in-hand with and f o r the b e n e f i t of the 
older s c i e n t i f i c d i s c i p l i n e s , p r i n c i p a l l y physics. In 
e a r l i e r times systematic a p p l i c a t i o n of Metrics i n the 
le s s mature d i s c i p l i n e s was infrequent and 
controversial(13) and f o r the moat part i n t u i t i o n 
and " p r o f e s s i o n a l judgement" su b s t i t u t e d f o r Metrics 
i n research. Presently, Metrics i s used more and more 
by researchers i n a l l d i s c i p l i n e s . As a r e s u l t , i t has 
become part of our d a l l y l i v e s and a c t i v i t i e s and i s 
manifested i n a v a r i e t y of unexpected d i s c i p l i n a r y 
apparel ( v i z . biometrics, chemometrlcs, econometrics, 
psychometrics, sociometrics, anthropometrics, e t c . ) . 
Two f a c t o r s are responsible f o r t h i s blossoming: the 
advent of large computers that can c o l l e c t , s t o r e , and 
manipulate unlimited amounts of data; and the 
increasing s o c i e t a l s i g n i f i c a n c e of s c i e n t i f i c data. 
The f i r s t f a c t o r and i t s e f f e c t s on science have been 
discussed elsewhere r e c e n t l y ( ^ ) • I t i s the second 
that i s of Interest here, e s p e c i a l l y as i t r e l a t e s to 
the p o t e n t i a l c o n t r i b u t i o n of Metrics to the 
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2 4 0 TRACE RESIDUE ANALYSIS 

standards, techniques, and t h e o r i e s of conversion of 
data i n t o information, often a troublesome 
undertaking. 

Tl»e value $ou,n<j(aUcm« Pf the sclent,jljfic method of 
Inquiry. 

I t i s a commonly held view that the s c i e n t i f i c method 
of i n q u i r y i s , or at l e a s t ought to be, o b j e c t i v e i n 
the sense that i t should transcend the personal value 
system of the researcher. The terms bad science, 
better science or best science are often used to 
connote the perceived degree of o b j e c t i v i t y of a 
p a r t i c u l a r s c i e n t i f i c activity(14)« Further, 
"trans-science" i s a term which was coined to s o r t and 
l a b e l putative encroachments upon " o b j e c t i v e " science 
by issues that can be posed as s c i e n t i f i c questions 
but cannot be answered by the a v a i l a b l e means of 
s c i e n t i f i c experimentation(15). The term was 
introduced because i t was thought that the d i v i s i o n of 
t e c h n o l o g i c a l l y important issues i n t o s c i e n t i f i c and 
t r a n s - s c i e n t i f i c would s i g n i f i c a n t l y reduce the 
problems of converting data i n t o useful iformation. 

As w i l l be shown below, the notion that science 
i s o b j e c t i v e i s mistaken and the mistake contributes 
to many of the problems encountered when s c i e n t i f i c 
reseach has Immediate economic or p o l i t i c a l 
consequences(16-21). I t should not be 
s u r p r i s i n g that years a f t e r the i n t r o d u c t i o n of the 
concept of trans-science, we s t i l l observe d i f f i c u l t y , 
c o n f l i c t and general misunderstanding not of what 
science can or cannot do, but of what science does do 
and how. The reason i s a general lack of appreciation 
that the s c i e n t i f i c method of in q u i r y i s Inherently 
and s p e c i f i c a l l y s u b j e c t i v e and that i t requires a 
value system without which i t simply cannot be 
a p p l i e d . 

This i s not a restatement of the o l d observation 
that science i s influenced d i f f u s e l y and subtly by the 
p r e v a i l i n g value system of s o c i e t y ( 2 2 ) . I t i s to 
say that value-laden judgments are s p e c i f i c , r e a d i l y 
i d e n t i f i a b l e and necessary parts of the c y c l i c 
sequence of a c t i v i t i e s that make up the s c i e n t i f i c 
research method. Such judgments are the s c i e n t i s t s ' 
means of coping with experimental uncertainty, i . e . , 
the d e c i s i o n r u l e s f o r t e s t i n g s t a t i s t i c a l 
hypotheses ( &) . 

Uncertainty i n measurement i s a u n i v e r s a l feature 
of a l l experimental work(£#2.*8.) And must 
be d e a l t with i f data are to be converted to 

 P
ub

lic
at

io
n 

D
at

e:
 J

ul
y 

15
, 1

98
5 

| d
oi

: 1
0.

10
21

/b
k-

19
85

-0
28

4.
ch

01
3



13. ZERVOS From Data to Information to Knowledge 241 

information. Decision theory, a branch of Metrics, 
provides the method of maximum expected 
u t i l i t i e s ( 2 3 ) f o r handling uncertainty i n 
s t a t i s t i c a l hypotheses t e s t i n g . But t h i s method 
requires the construction of an e x p l i c i t u t i l i t y 
s c a l e . As expected, the method f i n d s use when and 
where i t i s advantageous to construct such a s c a l e , 
e.g., engineering, product development research, 
business, economics research, e t c . In such cases, i t 
i s both p o s s i b l e and generally acceptable to assign 
monetary values to the consequences of co r r e c t or 
in c o r r e c t choices on the basis of experimental data. 
The approach i s d i f f i c u l t and not always preferable 
f o r other s c i e n t i f i c d i s c i p l i n e s , which consequently 
opt to deal with experimental uncertainty i n l e s s 
transparent ways. In general toxicology, cancer 
toxicology, a n a l y t i c a l chemistry, biology, 
d i a g n o s t i c s , c l i n i c a l medicine, e t c . , f o r instance, i t 
i s not always advantageous to stat e openly and 
e x p l i c i t l y the u t i l i t y s c a l e used by researchers. 
Consequently, the c u l t u r a l dimensions of using the 
s c i e n t i f i c method are not obvious. 

Examples of ?ufri#cUve# gfrplces. 

Discussion of the foll o w i n g three examples, namely, 
general toxicology, cancer toxicology, and a n a l y t i c a l 
chemistry w i l l be used to i l l u s t r a t e the point. They 
have been selected because, among the l i f e 
s c i e n c e - r e l a t e d d i s c i p l i n e s , they cover the spectrum 
of needs f o r s c i e n t i f i c "judgements." 

General Toxicology and i t s s p e c i a l branch cancer 
toxicology or chemical oncology are concerned with the 
adverse e f f e c t s of chemicals on l i v i n g systems. A 
major forc e behind current t o x i c o l o g i c a l research i s 
soc i e t y ' s need to protect the p u b l i c health and the 
environment from the t o x i c e f f e c t s of chemicals 
without unnecessarily i n h i b i t i n g the in t r o d u c t i o n of 
new products and technologies. Accordingly, a major 
part of present day t o x i c o l o g i c a l research c o n s i s t s i n 
using groups of experimental animals as devices to 
measure the t o x i c p o t e n t i a l of commercially important 
chemicals. 

The measurement begins with Neyman-Pearson type 
of testing<&) of the fol l o w i n g n u l l hypothesis: 

Given a defined s et of experimental conditions 
of observation, the incidence of adverse e f f e c t s 
i n a sample population of experimental animals 
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2 4 2 TRACE RESIDUE ANALYSIS 

i s not a f f e c t e d by a s p e c i f i c rate of exposure 
to the substance under study. 

The t e s t i s repeated f o r a l l i d e n t i f i a b l e e f f e c t s 
and f o r a number of d i f f e r e n t rates of exposure. 
Standard 2x2 contingency tables(2^.) are used to 
determine the odds of observing the bioassay outcome 
i f the n u l l hypothesis i s true using F i s h e r ' s exact 
t e s t . For a l l adverse e f f e c t s , i n c l u d i n g cancer, the 
f i r s t r u l e of the strategy f o r deciding whether a 
substance i s t o x i c i s to: 

Assume that the n u l l hypothesis i s true and i f 
the odds against the observed outcome are equal 
to or greater than 19 to 1 to r e j e c t the 
assumption; otherwise to accept i t . 

The d e c i s i o n r u l e s that follow vary depending on 
whether the observed e f f e c t s include cancer or not. I f 
they do not, the strategy r u l e s are c l e a r ( 2 5 ) . 
even i f not c l e a r l y l u s t i f l e d ( 2 6 ) . I f they do, the 
stategy r u l e s are unsettled and s t i l l the subject of 
much controversy(27-32). S i g n i f i c a n t l y , they 
depend on the uses or p o t e n t i a l uses of the substance 
under study. As a matter of f a c t , as a d i s c i p l i n e , 
chemical oncology does not seem to have evolved a 
c l e a r l y i d e n t i f i a b l e and accepted set of hypotheses 
and t e s t r u l e s f o r deciding whether a substance w i l l 
be considered a carcinogen and how potent i t may 
be(27). The U.S. Congress on the other hand has 
made several attempts to s p e c i f y a u t i l i t y s c a l e so 
that d e c i s i o n s concerning the carcinogenic p o t e n t i a l 
of s o c i e t a l l y important chemicals can be made by 
maximizing the expected u t i l i t i e s . The outstanding 
problem has been that the u t i l i t y s c a l e o u t l i n e d by 
the Congress i s constantly i n e i t h e r general or 
s p e c i f i c c o n f l i c t with one or more d e c i s i o n r u l e s 
devised by several s c i e n t i f i c groups with an i n t e r e s t 
i n the matter(30). 

In A n a l y t i c a l Chemistry, one of the ol d e s t and 
most " o b j e c t i v e " s c i e n t i f i c d i s c i p l i n e s , the current 
Impetus f o r research comes from the needs of other 
d i s c i p l i n e s and from s o c i e t y ' s need to protect i t s e l f 
and the environment from noxious chemicals. A n a l y t i c a l 
chemistry uses a large number of p h y s i c a l , chemical 
and biochemical p r i n c i p l e s to determine whether a 
p a r t i c u l a r , p o t e n t i a l l y noxious substance, the 
analyte, i s part of s p e c i f i c , commercially useful and 
s o c i e t a l l y Important matrices of substances (e.g.. 
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13. ZERVOS From Data to Information to Knowledge 243 

foods, water, a i r , s o i l , etc.) and at what proportion-
A n a l y t i c a l methods are not o r d i n a r i l y associated 

with the Neyman-Pearaon theory of hypothesis t e s t i n g . 
Yet, s t a t i s t i c a l hypothesis t e s t s are an indispensable 
part of method development, v a l i d a t i o n , and use . Such 
t e s t s are used to construct a n a l y t i c a l curves, to 
decide the "minimum s i g n i f i c a n t measured" quantity, 
and the "minimum detectable t r u e " quantity 
(33.34) of a method, and i n handling the 
" o u t l i e r value problem"(35.36). 

Two somewhat d i f f e r e n t types of n u l l hypotheses 
are tested, one during the development and v a l i d a t i o n 
of an a n a l y t i c a l method and the other each time the 
method i s used f o r one purpose or another. They are 
stated here i n general form but they can be made 
s u i t a b l y s p e c i f i c f o r experimentation and t e s t i n g 
a f t e r review and s p e c i f i c a t i o n of the p h y s i c a l , 
chemical and biochemical properties of the analyte, 
the matrix, and any probable i n t e r f e r i n g substances 
l i k e l y to be i n the same matrix. Further, the n u l l 
hypotheses of a n a l y t i c a l chemistry are cast and tested 
i n terms of e l e c t r o n i c s i g n a l to noise r a t i o s because 
modern a n a l y t i c a l chemistry i s overwhelmingly 
dependent on e l e c t r o n i c instrument responses which are 
characterized by noise. 

The basic n u l l hypothesis of method development 
i s : 

Given a defined set of experimental conditions 
s u i t a b l e f o r observing the e f f e c t s of the 
analyte on the properties of the matrix, the 
p r o b a b i l i t y of observing a s i g n a l to noise r a t i o 
greater than, or equal to, a predetermined 
number i s not af f e c t e d by the presence of a 
s p e c i f i e d number of un i t s of the analyte i n a 
s p e c i f i e d number of u n i t s of the matrix. 

This n u l l hypothesis i s tested repeatedly f o r 
d i f f e r e n t analyte concentrations i n each matrix of 
i n t e r e s t . The o v e r a l l t e s t i n g strategy i s frequently 
complicated by s p e c i a l r u l e s that depend on the 
reasons why the method i s being developed i n the f i r s t 
place. Always, however, the f i r s t r u l e i s : 

For each analyte concentration, assume that the 
n u l l hypothesis i s true. I f the odds against the 
observed s i g n a l to noise r a t i o are equal to or 
greater than 19 to 1 r e j e c t the assumption; 
otherwise accept i t . 

The basic n u l l hypothesis of method use i s of 
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244 TRACE RESIDUE ANALYSIS 

course predicated on the a v a i l a b i l i t y of a v a l i d a t e d 
method, i . e . , on the a v a i l a b i l i t y of a d i f i n e d set of 
experimental conditions s u i t a b l e f o r measuring analyte 
concentrations i n a s u i t a b l e range and on the 
expectation of an appropriately large ( i . e . , p>0.95) 
p r o b a b i l i t y that under the s p e c i f i e d conditions, the 
s i g n a l to noise r a t i o due to an analyte concentration 
i n the appropriate range w i l l be greater than or equal 
to a predeternimed number. Under such circumstances 
the n u l l hypothesis i s : 

The observed s i g n a l to noise r a t i o i s l e s s than 
that expected from the minimum detectable 
concentration of analyte. 

The f i r s t r u l e of the t e s t strategy i s : 

Assume that the n u l l hypothesis i s true, and i f 
the odds against the observed s i g n a l to noise 
r a t i o , are 19 to 1 or greater r e j e c t the 
assumtion, otherwise, accept i t . 

I t i s unnecessary to delve into hypothesis 
t e s t i n g s t r a t e g i e s f u r t h e r to d i s c e r n the r o l e of 
values i n the choice of d e c i s i o n r u l e s . The f o l l o w i n g 
are immediately noteworthy. F i r s t , whether one 
observes a n a l y t i c a l chemistry, an old and well 
e s t a b l i s h e d d i s c i p l i n e , or chemical oncology, a 
r e l a t i v e l y recent one, the observer i s struck by the 
f a c t that "making odds" i s an indispensable step of 
the process of converting data to information. This 
f a c t alone e s t a b l i s h e s beyond reasonable doubt that 
science i s no l e s s s u b j e c t i v e than other r a t i o n a l 
human endeavors. 

Second, a l l three d i s c i p l i n e s i n the chosen 
sample begin the process of converting data to 
information by using what might be c a l l e d a "gating" 
hypothesis which e s t a b l i s h e s a standard of strength 
f o r the c o r r e l a t i o n between the stimulus applied to 
the study system and the subsequent system changes 
that w i l l be considered a response. 

Th i r d , i m p l i c i t l y or e x p l i c i t l y , a l l three 
d i s c i p l i n e s decide the "gating" hypothesis by using a 
r u l e which r e j e c t s i t only i f the observed odds 
against i t are overwhelming, i . e . , no l e s s than 19 to 
1 and often much higher. However, very r a r e l y , i f 
ever, i s the choice j u s t i f i e d e x p l i c i t l y and 
a n a l y t i c a l l y . This i s a common and important feature 
of d e c i s i o n s t r a t e g i e s . 

Undoubtedly the choice of odds i n each s p e c i f i c 
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13. ZERVOS From Data to Information to Knowledge 245 

case i s based on some s o r t of a u t i l i t y s c a l e . I t i s 
generally d i f f i c u l t i f not impossible, however, to 
t e l l whose u t i l i t y s c a l e i t i s and how and why i t has 
the form i t does. For instance, the p a r t i c u l a r choices 
of the gating odds (commonly known as the s i g n i f i c a n c e 
l e v e l , the alpha value or the acceptable e r r o r of the 
f i r s t kind) are a measure of i n d i v i d u a l and c o l l e c t i v e 
concern about f a l s e - p o s i t i v e d e c i s i o n s . The 
conspicuous absence from the de c i s i o n r u l e s of, or the 
perfunctory concern about, the l i m i t a t i o n s of a l l 
methods of measurement f o r e r r o r s of the second kind 
i s a measure of i n d i v i d u a l or c o l l e c t i v e i n d i f f e r e n c e 
toward false-negative d e c i s i o n s . I f such a t t i t u d e s are 
indeed the foundation of the de c i s i o n r u l e s , they 
manifest the i m p l i c i t u t i l i t y s c a l e s of the concerned 
d i s c i p l i n e s . The d i f f i c u l t y of i d e n t i f y i n g the 
a r c h i t e c t s of these s c a l e s and the reasons f o r t h e i r 
c h a r a c t e r i s t i c features i s an adverse commentary on 
science. Knowing more about them i s important to a l l , 
not simply a matter of "science" f o r t o x i c o l o g i s t s or 
a n a l y t i c a l chemists only. 

But where have these a t t i t u d e s come from and what 
i s t h e i r j u s t i f i c a t i o n ? Why should there be strong and 
pervasive concern among s c i e n t i s t s about e r r o r s of the 
f i r s t kind ( f a l s e - p o s i t i v e decisions) while l i t t l e 
concern and only perfunctory thought i s given to 
er r o r s of the second kind? 

Undoubtedly, some j u s t i f i c a t i o n f o r t h i s a t t i t u d e 
stems from the dynamics among s c i e n t i s t s and from the 
way s c i e n t i s t s perceive themselves and t h e i r work 
I n d i v i d u a l l y and c o l l e c t i v e l y . S c i e n t i s t s are 
generally a very conservative group(37). They 
reserve harsh p e n a l t i e s f o r those among them who take 
chances and announce conclusions that might not be 
confirmed subsequently. In terms of peer recogn i t i o n 
and standing among one's fellow researchers, the 
consequences of l o s i n g a Neyman-Pearson bet are 
p o t e n t i a l l y devastating and the betti n g odds that 
s c i e n t i s t s require are therefore adjusted accordingly. 

To j u s t i f y the s e l e c t i o n of overwhelming odds 
against the n u l l hypothesis many w i l l a l s o argue that 
a lax standard f o r e r r o r s of the f i r s t kind would 
promote i n e f f i c i e n c y i n research and would therefore 
be detrimental to the s c i e n t i f i c e n t e r p r i s e as a 
whole. This argument i s behind the often-heard 
a s s e r t i o n that s c i e n t i s t s need to be c e r t a i n about the 
p o s i t i v e r e s u l t s they accept "....because they are 
used to construct new hypotheses and th e o r i e s and w i l l 
be incorporated i n t o the body of assumed s c i e n t i f i c 
knowledge."(37,3&) 
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2 4 6 TRACE RESIDUE ANALYSIS 

The argument sounds impressive. But a l l 
s c i e n t i f i c t h eories and knowledge are temporary and 
incomplete d e s c r i p t i o n s of p h y s i c a l r e a l i t y ; they are 
forever subject to change. Thus, i t i s at l e a s t 
arguable and perhaps impossible to substantiate 
whether science stands to advance more e f f i c i e n t l y by 
being overly cautious about e r r o r s of the f i r s t kind 
and e s s e n t i a l l y i n d i f f e r e n t to those of the second. 

F i n a l l y , a t h i r d type of argument i s p o s s i b l e 
e s p e c i a l l y f o r the choices of d i s c i p l i n e s that use and 
depend on c o s t l y experimental techniques (e.g., the 
2-year bioassays of t o x i c o l o g y ) . The concern about 
f a l s e p o s i t i v e d e cisions implied by the requirement 
f o r small values of alpha regardless of the 
consequences probably r e f l e c t s where t o x i c o l o g i s t s 
c o l l e c t i v e l y s t r i k e a balance between the need f o r a 
broad f r o n t advance and s c a r c i t y of resources. 

Whatever the true merits of the reasons and the 
j u s t i f i c a t i o n s f o r the conservative a t t i t u d e s of most 
s c i e n t i s t s , i t i s true that one seldom hears arguments 
f o r avoiding e r r o r s of the second kind, e s p e c i a l l y f o r 
small d i f f e r e n c e s between means(8). I t appears 
Instead that there i s a convention i n the l i f e 
s c i e n c e - r e l a t e d d i s c i p l i n e s which automatically sets 
at 0.05 the maximum acceptable value f o r e r r o r s of the 
f i r s t kind without c r i t i c a l consideration of a l l that 
that might e n t a i l . 

Decision Rules f o r S o c i e t a l l y Important Study 
Systems; Clashing Values 

I t would be preferable, of course, i f i n d i v i d u a l l y and 
c o l l e c t i v e l y , s c i e n t i s t s were more forthcoming with 
explanations and j u s t i f i c a t i o n s of t h e i r choices of 
values. But i t i s d i f f i c u l t to advance strong 
arguments against t h e i r choices i f research i s 
p r a c t i c e d only as the asymptotic pursuit of "pure 
t r u t h " and i f the choices are not misrepresented as 
o b j e c t i v e and s c i e n t i f i c . However, as i t i s funded 
and p r a c t i c e d c u r r e n t l y , s c i e n t i f c research deals 
almost e x c l u s i v e l y with s o c i e t a l l y important study 
systems and therefore has p r a c t i c a l as well as "purely 
s c i e n t i f i c " o b j e c t i v e s . Thus, i t i s proper to require 
that d e c i s i o n r u l e s be adequately explained and 
j u s t i f i e d i n t h e i r s o c i e t a l context and even to look 
with a jaundiced eye at misrepresentations of value 
choices as " o b j e c t i v e " or " s c i e n t i f i c " f o r whatever 
reason and i n any research context. 

Examination of a sample of three d i s c i p l i n e s 
revealed that the requirement f o r 19 to 1 or greater 
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13. ZERVOS From Data to Information to Knowledge 247 

odds against gating hypotheses i s quite general. The 
unsuspecting may indeed run the danger of mistaking 
t h i s requirement f o r a s c i e n t i f i c p r i n c i p l e . I t i s 
not. I t i s a gambler's r u l e . In common jargon, when 
using i t i n science, the i n v e s t i g a t o r , the data 
analyst, e t c . behave l i k e gamblers with a bett i n g 
strategy. 

Most s c i e n t i s t s are taught and understand t h i s 
aspect of science. But the l i t e r a t u r e contains many 
admonitions against granting a s p e c i a l status to t h i s 
convention, and many i n d i c a t i o n s that i n v e s t i g a t o r s 
assume i t i s a s c i e n t i f i c a l l y derived discriminant 
between what has been proved " s c i e n t i f i c a l l y " and 
chance occurences. 

Ackoff(23). f o r example, s t a t e s : 

The value of alpha i s conventionally taken to be 
0.05 but t h i s choice generally has no r a t i o n a l 
b a s i s . " 

Also, i n disc u s s i n g matters of s t a t i s t i c a l 
s i g n i f i c a n c e and i t s r o l e i n FDA decisions a former 
Commissioner of Food and Drugs stated(38): 

"Although the 0.05 confidence l e v e l has often 
been used i n the s c i e n t i f i c l i t e r a t u r e to 
determine whether a r e s u l t i s p o s i t i v e , there i s 
no f i x e d convention f o r the matter." 

And f i n a l l y i n dis c u s s i n g the procedures f o r 
t e s t i n g s t a t i s t i c a l hypotheses Lehmann stated 
t h a t ( 8 ) : 

"The choice of a l e v e l of s i g n i f i c a n c e , alpha, 
w i l l usually be somewhat a r b i t r a r y since i n most 
s i t u a t i o n s there i s no prec i s e l i m i t to the 
p r o b a b i l i t y of an e r r o r of the f i r s t kind that 
can be t o l e r a t e d . I t has become customary to 
choose f o r alpha one of a number of standard 
values such as .005, .01, or .05. There i s some 
convenience i n such standardization since i t 
permits a reduction i n c e r t a i n t a b l e s needed f o r 
c a r r y i n g out various t e s t s . Otherwise, there 
appears to be no p a r t i c u l a r reason f o r s e l e c t i n g 
these values. In f a c t , when choosing a l e v e l of 
s i g n i f i c a n c e one should a l s o consider the power 
that the t e s t w i l l achieve against various 
a l t e r n a t i v e s . I f the power i s too low one may 
wish to use much higher values of alpha than the 
customary ones, f o r example, .1 or .2." 

American Chemical 
Society Library 

1155 16th St. N. W. 
Washington, D. C. 20038 
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248 TRACE RESIDUE ANALYSIS 

On the other side of the issue, many s c i e n t i s t s 
e x p l i c i t l y c l a s s i f y the r e s u l t s of hypothesis t e s t i n g 
as p o s i t i v e or negative by using the conventional 
values of p<.05 as the discriminant. Others are not so 
e x p l i c i t but show s i m i l a r p r e d i l e c t i o n s by 
i d e n t i f y i n g , f o r example, " s i g n i f i c a n t " r e s u l t s 
according to t h i s r u l e . 

In what i s perhaps the most e x p l i c i t case of t h i s 
type of p r a c t i c e i t has been argued(38) that i f 
the convention i s not followed, "...science i s done a 
d i s s e r v i c e ; any attempt to use the l e v e l s of 
s i g n i f i c a n c e otherwise i s an exercise i n f u t i l i t y ; " 
and that d e c i s i o n s that are not based on the s p e c i a l 
place that must be reserved f o r p<0.05 are: 
". . . s u b j e c t i v e and a r b i t r a r y and have not been 
establi s h e d by p r a c t i c e . " 

Even though usually l e s s e x p l i c i t , t h i s p r a c t i c e 
i s very common whether one considers bona f i d e , peer 
reviewed, s c i e n t i f i c reports or o f f i c i a l p u b l i c health 
p r o t e c t i o n documents(39). The s c i e n t i f i c 
l i t e r a t u r e i s f u l l of subtle p r a c t i c e s of the genre. 
Tables, f o r Instance, contain e n t r i e s which are 
footnoted or otherwise marked to i n d i c a t e s i g n i f i c a n c e 
based on the "magic" p<.05(40-44). 

I t i s perhaps f u t i l e to hope that s c i e n t i s t s can 
continuously focus on the true meaning of t h e i r 
l o g i c a l t o o l s and that they w i l l use them properly. 
Their d a i l y tasks are perhaps too complex to permit 
constant f i n e - t u n i n g of the d e c i s i o n r u l e s of t h e i r 
d i s c i p l i n e s . Thus, they prefer to adopt conventions 
based on what others have experienced and described or 
on what appears to have served t h e i r d i s c i p l i n e s well 
in the past(37). 

Such p r a c t i c e s might or might not be sanctioned 
by custom. Their c h i e f e f f e c t , however, i s that they 
give the appearance of a law of nature to the p<0.05 
and other such conventions. And what i s more, they 
give the s c i e n t i f i c e n t e r p r i s e a cloak of o b j e c t i v i t y 
which i s unecessary, unbecoming and, what i s most 
important, p o t e n t i a l l y damaging to the s o c i e t a l r o l e 
of science. 

In the context of health and environmental 
pr o t e c t i o n the choice of the value of alpha i s a 
c r i t i c a l issue of the d e c i s i o n making processe. I t 
involves much more than the p r o t e c t i o n of personal or 
d i s c i p l i n a r y reputations and there i s continuous need 
to reexamine i t along with other s i m i l a r conventions. 
If hypothesis t e s t i n g d e c i s i o n s reduce to making bets 
about the future status of the the p u b l i c health and 
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13. ZERVOS From Data to Information to Knowledge 249 

the environment, the p u b l i c has the r i g h t to know the 
true nature of the bet and to decide the weight i t 
w i l l accord to r u l e s apparently designed to protect 
p r o f e s s i o n a l reputations and standings among 
s c i e n t i f i c peers. 

I t i s noteworthy that i n t h i s broader context of 
de c i s i o n making, the conservative behavior of 
s c i e n t i s t s who use conventions as i f they were r u l e s 
of nature c o n s t i t u t e s a paradox. On the one hand, they 
usu a l l y demand odds overwhelmingly against the n u l l 
hypothesis before concluding i t i s f a l s e , and 
therefore behave as a r i s k - a v e r a i v e group r e l u c t a n t to 
gamble personal and c o l l e c t i v e reputations. On the 
other, many behave as r i s k - t a k e r s and are often 
w i l l i n g , c o l l e c t i v e l y or i n d i v i d u a l l y , to loose major 
health and environmental r i s k s upon the p u b l i c . 
Concern about t h i s troublesome aspect of the behavior 
of s c i e n t i s t s acting as t e c h n i c a l advisers and 
de c i s i o n makers was expressed by the same former 
Commissioner of Food and Drugs i n the context of 
regu l a t i n g carcinogenic substances i n the environment. 
He stated(38): 

"In the same context we are e s p e c i a l l y troubled 
by the prospect of mistakenly d e c l a r i n g that the 
r e s u l t s of a study are negative, i . e . , of 
mistakenly concluding that a study demonstrates 
saf e t y . Such a d e c i s i o n , i f i n c o r r e c t , could 
r e s u l t i n widespread marketing of a carcinogen. 
A regulatory agency may therefore have l e s s 
reason than the s c i e n t i s t s to i n s i s t on a very 
high degree of ce r a i n t y before concluding that a 
study i s p o s i t i v e , i . e . , before r e j e c t i n g the 
null-hypothesis. S i m i l a r l y , there may be reason 
f o r a regulatory agency to require a greater 
stringency than other s c i e n t i s t s require before 
concluding that a study i s negative." 

However, i t i s not unusual f o r some s c i e n t i s t s to 
r a i s e the straw-man of a putative need f o r better 
science(45). They do t h i s to p u b l i c l y Impeach 
p o l i c y d e c i s i o n s that they consider unmindful of 
hypothesis-testing r u l e s f o r whatever reasons. Yet, 
to a large measure, these r u l e s are designed to 
protect the i n t e r e s t s of s p e c i f i c s c i e n t i f i c 
d i s c i p l i n e s and usual l y have l i t t l e to do with the 
regulatory f u n c t i o n . I t should be kept i n mind that 
the ends to be served by the d i s c i p l i n e s and the 
agencies, although both l e g i t i m a t e , are e n t i r e l y 
d i f f e r e n t . Their d i f f e r e n c e can be gauged by a simple 
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2 5 0 TRACE RESIDUE ANALYSIS 

a p p r a i s a l of the consequences of mistaken decisions i n 
the two cases. 

A Recommendation 

Thus, how to deal e f f e c t i v e l y and openly with 
experimental uncertainty remains a problem of modern 
i n d u s t r i a l s o c i e t y i f i t i s admitted that use of the 
s c i e n t i f i c method of in q u i r y has aspects and 
consequences which are s o c i e t a l l y too Important to be 
the exc l u s i v e preserve of the s c i e n t i f i c d i s c i p l i n e s 
to deal with i n terms of unstated assumptions or 
conventions. 

The expanded use of Metrics suggests i t s e l f as 
the most rigorous means to overcome t h i s problem which 
a r i s e s i n the most s t r e s s f u l form when converting data 
to information. The e x c e l l e n t s t a r t made by the 
chemists who est a b l i s h e d the d i s c i p l i n e of 
Chemometrlcs should now be followed by others who must 
deal with the s o c i e t a l i m p l i c a t i o n s of our 
continuously expanding a b i l i t y to c o l l e c t data. 
S p e c i f i c a l l y , l i f e s c i e n c e - r e l a t e d d i s c i p l i n e s other 
than chemistry should now focus on Metrics which 
should become a generalized d i s c i p l i n e defined i n 
analogy to Chemometrlcs as the " d i s c i p l i n e that uses 
mathematical and s t a t i s t i c a l methods (a) to design or 
s e l e c t optimal measurement procedures and experiments, 
and (b) to provide maximum information by analyzing 
c o l l e c t e d data." 

*/The views expressed herein are those of the author 
only and do not represent o f f i c i a l FDA p o s i t i o n s . 
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Panel Discussion 
Advice to Analytical Chemists 

Edited by DAVID A. KURTZ 

A panel discussion of symposium speakers with 
audience participation was held to discuss means and 
methods of instituting chemometric (statistical, 
computer) methods into general use in analytical 
problems. Discussion centered around three topics: 
analysts in their own work, analysts in the 
educational process, and analysts in the political 
and social scene. 

A panel o f a l l o f the speakers i n the symposium was s e t up at i t s 
c o n c l u s i o n to d i s c u s s the s u b j e c t , "Advice to A n a l y t i c a l Chemists" 
f o r the u t i l i z a t i o n o f chemometric techniques i n a n a l y s i s . The 
problem as we saw i t , i s that we have to overcome t h i s f e a r o f 
s t a t i s t i c s and e s p e c i a l l y o f t h i s word chemometrics. We have to 
l e a r n what i t means, how to understand i t , and how to use i t . 
When the p r o p o s a l to the ACS books committee was f i r s t made to 
p u b l i s h t h i s symposium o f papers, the comment was made by t h e i r 
e d i t o r i a l board tha t the i n f o r m a t i o n was f a r ahead o f i t s time. 
Of course, the counter response o f our people was th a t we are 
behind the times i n the use o f these concepts. I t i s with t h i s 
i d e a i n mind t h a t we embarked on the panel d i s c u s s i o n . 

T h i s chapter d i s c u s s i o n i s not a verbatim l i s t i n g i n orde r o f 
comment. Quotes o f speakers, panel members or not, are p l a c e d i n 
an ord e r designed f o r c l a r i t y to the read e r . There are three 
major s e c t i o n s : 1. A n a l y s t s i n t h e i r own work, 2 . A n a l y s t s i n the 
e d u c a t i o n a l p r o c e s s , and 3» A n a l y s t s i n the p o l i t i c a l / s o c i a l 
scene. 

The f i r s t a r ea covers l a b o r a t o r y a n a l y s i s . A n a l y s t s can 
express r e s u l t s from data i n a number o f ways...mean, standard 
d e v i a t i o n , and range. The a n a l y s t s can separate the e r r o r 
i n v o l v e d i n v a r i o u s phases o f an a n a l y t i c a l problem. They can 
work on a s i n g l e d e t e c t i o n technique, which i s u n i v a r i a t e , o r they 
can u t i l i z e more than one measuring technique, which i s 

0097-6156/ 85/ 0284-0253S06.00/ 0 
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2 5 4 TRACE RESIDUE ANALYSIS 

mult ivar ia te . The l a t t e r often y ie lds much more information 
re la t ing the sample to the subject area than the extra work needed 
for the accumulation of the addi t ional data. S t a t i s t i c a l 
processes also allow data base handling, number crunching, and 
discovery of the structure of data. A l l of these are covered in 
this f i r s t sect ion. 

The second area discusses the educational process. The 
statements were made as to how analysts can bring about or educate 
the general society into a greater appreciation and use of such 
methods. These can be done through educating at the analyst , 
user, or manager l e v e l . It could be brought about at the 
manufacturers l eve l in the design and construction of a n a l y t i c a l 
instruments, the black boxes, that are used to get the data. 
F i n a l l y , the need for l e g i s l a t i v e education i s presented. 

Questions re la t ing the p o l i t i c a l / s o c i a l area of our society 
with a n a l y t i c a l information are found i n the th ird sect ion. These 
include an evaluation of r i s k i n g iv ing numerical resu l t s , the 
interact ion of the analyst and submitter of samples, and the 
problem of receiving data from divergent sources. This section 
also includes looking at d i f ferent motives in the use of the data. 

We hope by presenting this forum that ideas can flow from 
readers to aid i n a f u l l e r understanding and use of s t a t i s t i c a l 
methods. We hope we can use such methods in our laboratories and 
spread to other parts of society a greater appreciation and 
understanding of them. 

Analysts i n the ir Own Work 

Describing Data. The use of the mean, standard deviat ion, and 
range are a l l well known methods of describing data. Problems 
arise i n such descr ipt ions , however, when ind iv idua l values are 
given as "less than." Dr. Currie warns: "the reporting of 
experimental results simply as upper l i m i t s or ' less than numbers 
w i l l frequently result i n a subsequent rounding o f f and expressing 
as zero." 

One person suggested that maybe the best thing i n ca lcu la t ing 
a mean i s to exclude ' less than* f igures . Dr. M i t c h e l l concurs: 
"That's correct . In a majority of cases the ' less than' values 
are beyond the l i m i t of determination and are s t a t i s t i c a l l y 
supposedly i n v a l i d . " 

But when pushed by a requester who wants a number and an 
average, Dr. Currie again responds, 

"An average obviously can only be deduced by going back to 
the o r i g i n a l estimates. I f one of the numbers i n your data set i s 
' less than' a certa in value and you round i t to zero or some upper 
l i m i t , then your result w i l l be biased. There are, however, some 
robust s t a t i s t i c a l techniques that can be applied in these cases. 

"For example, i f you wish to estimate a mean for a series of 
re su l t s , including a number of upper l i m i t s , you always have to 
make an assumption. You could i n certa in cases use a median as an 
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Panel Discussion 255 

estimate that would at least be less biased than trying some kind 
of average ... but the best i s preserving a l l of the or i g i n a l 
information." 

"Another way of presenting data involving 'less than' data 
points," said Dr. Kurtz, " i s to present the mean as a range. The 
lower l i m i t of the range i s the value of the mean assuming a l l 
'less than' data points are zero or as a defined point. The upper 
l i m i t of the range i s the value of the mean when a l l the 'less 
than' data points are at the maximum level within that uncertainty 
range. Thus the li m i t s of the uncertainty range of the mean can 
be ascertained." 

The Confidence Interval. The use of a confidence band around the 
data was of concern to the panel. Dr. Mitchell: "The confidence 
band i s the f i r s t thing the ana l y t i c a l chemist should stick around 
the number he reports. That w i l l not be a relative standard 
deviation or a l i n e a r i t y statement. The confidence band i s the 
f i n a l output on data statements. It i s something we should get i n 
the habit of doing. The meaning of the band that I use i s a band 
which encloses the 'true value' with a certain probability, 
t y p i c a l l y 90$. They are computations concerned only with 
precision. You would need, i n addition, some sort of accuracy 
statement on that as necessary. The confidence band i s t y p i c a l l y 
symmetrical: I f the most l i k e l y concentration i s 3 and the 90$ 
confidence range i s 1 to 7, or -3 to +8 as the case might be, the 
range encloses 90$ of the values obtained. The users perhaps 
should get used to that type of information. People w i l l also get 
a fee l for the spectacular difference i n data quality between the 
optimum range for your machine and right down the bottom." 

In the description of a cal i b r a t i o n graph Dr. Kurtz adds, "It 
may be helpful to give the confidence bandwidth at three different 
points, the maximum and minimum points of the ca l i b r a t i o n graph 
and the mean point (where the band i s of minimum width). At the 
same time you may wish to give the number of cal i b r a t i o n points or 
something l i k e t h i s . " 

And he continues, "The confidence bandwidth of a cal i b r a t i o n 
problem does not adequately describe the solution of unknowns, but 
i t could give information about the status of the ana l y t i c a l i n 
strument, such as a gas chromatograph. It could t e l l how e f f i 
cient i t was running on a particular day. For the solution of un
knowns, one needs, i n addition to the confidence bandwidth, inf o r 
mation about the response bandwidth which provides the more impor
tant portion of the error estimations i n a cal i b r a t i o n situation." 

In reporting data, Dr. Kurtz suggests "Maybe we should report 
not the point estimate but rather just the band. We a l l know the 
point estimate i s located about the middle." 

Dr. Mitchell adds, "You could give a rather amusing example 
of that and that would be discussions of the 1986 budget d e f i c i t , 
which, of course, i s the difference between two very large numbers 
each of which have a considerable amount of uncertainty on i t . 
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2 5 6 TRACE RESIDUE ANALYSIS 

You don't get that impression from the people we see on 
t e l e v i s i o n . " 

P i c t u r e s . I f experimental r e s u l t s are to be described by-
multiple points, such as the mean, range, and d i s t r i b u t i o n , Dr. 
M i t c h e l l suggested, "Your output w i l l be pictures rather than 
numbers." 

Pictures as graphs or other forms do convey more information 
about a subject area that numbers alone can dc. This was 
suggested i n numerous places of the discussion, but, of course, 
few hard suggestions could be made i n t h i s area as aids to the 
a n a l y t i c a l chemist. Dr S t a l l i n g presented a strong argument for 
pictures: 

"I would l i k e to respond to one aspect of t h i s that seems 
very important and that i s to t r y to present the p i c t o r i a l image 
of the information. Too many times a c o l l e c t i o n of samples what 
goes out of our lab i s presented as a tabular report. Included i s 
no histogram of frequency, no d i s t r i b u t i o n as to function of 
sample s i z e ; there i s no r e a l attempt to t r y to p i c t o r i a l l y 
represent what was done. I have t r i e d to deal with t h i s by using 
the graphics presentation that would encompass the information. 
Now, i t gets to be a r e a l pain i f you have to do that by hand; i t 
takes as much time sometimes to put that together as i t did to put 
the rest of the report together. But I r e a l l y think we would be 
ahead of the game i f we didn't leave the data i n tables. I f you 
are dealing with a lay person or an administrator, the best 
approach I have had i s to t r y to p i c t o r i a l l y present the 
information. Then you can say "Here i s the problem and here i s 
the d i s t r i b u t i o n . I t doesn't take 2% of the e f f o r t that i t could 
take to square with what i s going to happen i f he misunderstands 
the problem. Te l e v i s i o n news does that sort of thing very w e l l . 
I don't care what you use, pie charts or whatever, but make some 
attempt to convey a p i c t o r i a l perspective of the information you 
have gathered. And t h i s may make men translate some information." 

The comment was then made from the audience that your 
d i s t r i b u t i o n may not be a common d i s t r i b u t i o n about a point at 
a l l . I t may be l i m i t e d to one side or the other. By using the 
d i s t r i b u t i o n p i c t o r i a l , you can c l e a r l y show the true s i t u a t i o n . 

Univariate Verses M u l t i v a r i a t e . The problem of working i n 
univariate or m u l t i v a r i a t e environment was addressed i n only one 
comment even though a whole book could be w r i t t e n on t h i s topic 
alone. "Analysts should change t h e i r d i r e c t i o n , wherever they 
can, to work i n a m u l t i v a r i a t e area." Dr. S t a l l i n g s a i d , "And the 
thing that impresses me so much about the chemometrics p o t e n t i a l , 
i s the c a p a b i l i t y of using m u l t i v a r i a t e s t a t i s t i c s . How many 
problems can you define i n the r e a l world better i n a univariate 
way? Name me one!" 
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Design and the Measurement Process* The f i n a l and concluding 
advice on describing data i s that numerical r e s u l t s should be 
accompanied by statements t e l l i n g about the method used i n 
obtaining the number. Dr. Currie stressed the importance of 
including an adequate number of blanks and reference samples, an 
adequate experimental design and des c r i p t i o n of the measurement 
process, and i n continuing q u a l i t y c o n t r o l . 

In answer to t h i s an u n i d e n t i f i e d analyst i n the audience 
comments: "Not only that, but i n some instances you are doing 
analysis i n an i n d i r e c t way. You can't receive a l l impulses i n 
the measurement system, but you are seeing a group of molecules 
that you are humping together... you are lumping that together and 
the mixture of these can change r e s u l t s a l i t t l e b i t . Whatever 
the combination happened i n that p a r t i c u l a r sample, you are not 
endeavoring to f i n d out what the r e a l mixture i s and make a 
general statement of that type. Knowing those kind of 
experiments, knowing the method and r e f l e c t i n g that 
i n the answer i s awfully important. Only then, meaning i s 
given to the answer i n r e l a t i o n to the s i t u a t i o n where you are 
very s p e c i f i c to a p a r t i c u l a r molecule or to a p a r t i c u l a r isomer, 
whatever the case may be. This i s p a r t i c u l a r l y important i n trace 
a n a l y s i s , and that i s one of the reasons why I've always harped on 
the importance of describing or r e f e r r i n g to the method ... 
somebody l a t e r on could come long, take a look at the r e s u l t , and 
say 'I know where that r e s u l t came from and I know what i t means.' 
I f he ju s t takes the number, he doesn't know unless he got some 
sort of reference or method comment on technique as to what and 
where the method came from." 

Systematic Error i n Laboratory Analysis. Dr. Currie: " I would 
l i k e to ra i s e a nasty issue that i s pertinent to some of the 
comments I am hearing with respect to complex measurements and 
environmental systems and that i s , i t i s rare f o r me to see much 
reference to possible systematic error. I just want to raise the 
fact that the systematic error, as we heard yesterday, i n 
sampling, can be overwhelming." 

Dr. S t a l l i n g adds to that: "I have pa r t i c i p a t e d i n quite a 
number of di o x i n analyses f o r TCDD down to the parts per t r i l l i o n 
range, and I have been extremely impressed by the fact that at 
1 5 - 2 0 ppt i n f i s h residues that the agreement f a l l s w i t hin 2 0 - 3 0 $ 
of these values. This may a l l come about with the fact that we 
are using C - 1 3 l a b e l s as an i n t e r n a l standard. Some r e f l e c t i o n on 
t h i s s i t u a t i o n has lead me to think that perhaps what we need i s 
element 2 0 5 , that doesn't occur i n our universe, which we always 
add as an i n t e r n a l standard to the sample at the beginning of the 
analysis. No matter what we do e a r l i e r , when we get to the f i n a l 
output f o r the sample, we can compare the expected value for that 
compound to see i f i t f a l l s w i t hin a range that we expect f o r the 
point. We then can look at the measurement r a t i o and compare 
that, too. Now that doesn't mean i t goes through the same 
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258 TRACE RESIDUE ANALYSIS 

procedure. There are a l o t of problems with that. The only way I 
have seen that we have been able to manage at a l l from a 
c a l i b r a t i o n viewpoint on t h i s dioxin problem has been through the 
use of the i n t e r n a l standard." 

The measurement of uncertainties i s always a sp e c i a l problem 
and i s usually i n d i r e c t l y determined. One d i r e c t measurement was 
done i n Dr. C u r r i e 1 s laboratory. As he explained, "We recently 
ran through some i n t e r e s t i n g exercises where we created data sets 
to simulate the behavior of pollutants i n the environment. In 
generating the data matrix, we included elemental and i s o t o p i c 
compositions, as well as stochastic behavior. In any case we knew 
the truth as wel l as the measures of pr e c i s i o n . (We had three 
d i f f e r e n t kinds of imprecision working here.) Now, there were 
brave souls out there who operated on these data knowing the truth 
was known to somebody. They presented us with t h e i r r e s u l t s and, 
more importantly, t h e i r estimates of uncertainty. We have learned 
a tremendous amount from t h i s , as have the pa r t i c i p a n t s involved, 
i n using alternate ways of operating on the data and discovering 
the problems that are needed to be solved i n each case. While I 
can't go into d e t a i l here, both those who were using factor 
analysis techniques and those using least squares methods 
i d e n t i f i e d elements of s c i e n t i f i c judgment, such as how many and 
what type of source components are present i n a given sample. I 
just wanted to state that t h i s kind of exercise speaks to the 
question of re a l uncertainties i n chemometric operations and I 
think i t can help determine them." 

Number Crunching. We poke into a general discussion and hear "I 
gather data over periods of time. Later, I do my ana l y s i s , not 
with one sample, but with a dozen or a hundred samples. Then I 
put i t a l l together. What you might think of i n your 
i n t e r p r e t a t i o n may not be the i n t e r p r e t a t i o n you want to rest on a 
year from now. When you go back and put i t a l l together, you may 
want to go back to the raw data." 

"To respond to that point," says Dr. S t a l l i n g , "I think there 
i s a t e r r i b l e loss of time and e f f i c i e n c y by the fact that 
information i s n ' t projected into the data that has already been 
gathered as the system goes long. We have used that approach as 
sort of a feedback loop. Every time a new block of data of 40 
samples or so comes i n , i t gets looked at. I t may be that you 
have 3 samples i n there that don't even r e l a t e to the r e s t . We 
end up with o u t l i e r s , and t h i s i s a r e a l problem. There are no 
possible means of going back out into the f i e l d or doing anything 
i n retrospect to understand why we had that o u t l i e r . 

"The f i r s t step i n a l l t h i s i s the capacity to transfer 
measured data," he continued. "That's the f i r s t hurdle that I see 
you get over for any reasonable number of samples. I c e r t a i n l y 
f e e l that 50 samples i s a reasonable size of information. I t 
could be 1000 or i t could be l e s s . The cost to do these kind of 
things i s a cost more i n time than money. Time wise, I think i t ' s 
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impossible to do the data digestion and manipulation i n less than 
10$ of the time..,20$ i s a more reasonable guess. You should see 
some of the gymnastics that I do routinely. The data base that we 
have l i v e s on a PDP-11 34* It has a capacity for a magnetic tape, 
9 track output. I can easily go i n and i n 5 minutes dump 100 
samples to the tape. Federal express w i l l get that to Urbana, IL 
overnight where the CDC-Cyber system i s . It takes 2 days, unless 
i t i s real urgent, i f I am lucky to get the consultant i n the CDC 
center to dump the data f i l e i n my directory so I can get at i t . 
Now, the short cut to this i s to c a l l Ma B e l l up with a l i t t l e 
RS-232 floppy disk and run over to the terminal and yank out the 
plug and stick i t i n the back of the floppy disk, capture the 
data, and hope that the operator doesn't come in real quick while 
I have his terminal unplugged. I then turn right around, c a l l the 
data system up, and transfer i t over the l i n e . You can transfer 
10K of data i n 15 minutes. You lose 2 to 3 lines into the editor, 
decode, and take another 15 minutes to straighten i t up and get i t 
back i n . In the second way I can get 50 samples into the machine 
in under 30 minutes. That data transporting problem i s a real 
nasty mess. Now, i n the lab we have, we go though one PDP-11 
integrator, the PDP data base, the modem or data tape output, and 
the CDC-Cyber for analysis. The data comes back to my micro so I 
can pick up the data values from i t . I may have to go home and 
put i t up on my micro to get a three dimensional plot i f I want to 
do that. So, right now i t i s a d i f f i c u l t thing to put these 
operations in place. It needn't be that complicated, but I just 
try to respond as to how to manage the information. It i s 
possible to do the measurement, i t i s possible to quantify i t , and 
i t i s possible to process the data with very l i t t l e more effo r t 
than what you are currently doing." 

"I think you have i d e n t i f i e d the general core of the transfer 
information problem," says an audience respondent. "At the moment 
there are not adequate conventions for data communication and 
transportability ... i n terms of information processing standards 
and software protocols for hardware devices. These have to be 
agreed upon i n order to allow hierarchal and distributed type 
databases to exist through exchange of data. I think that the 
answer to that i s that the analytical chemist and those people who 
are interested i n that sort of data exchange w i l l have to become 
extremely active within the voluntary consensus standards process 
to r e f l e c t the needs of the user. I think that that's one of the 
deficiencies i n why these standards don't exist because the users 
have not been represented, and, more, the vendors and suppliers of 
equipment have been involved i n setting these standards. The 
various professional d i s c i p l i n e s are going to have to participate 
i f i n fact they are going to be responsive to the need of the 
user. Otherwise, who i s going to know who those users are." 

Database Questions. Because of his heavy involvement i n 
databases, Dr. S t a l l i n g now asks questions about the form of data: 
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2 6 0 TRACE RESIDUE ANALYSIS 

"How r e a d i l y i s the information that i s generated by the 
analyst i n machine-readable format? Better, what i s the state of 
a f f a i r s i n terms of being able to get data from one system to 
another without having to type or write i t , or p h y s i c a l l y do 
things with the information? Instrument companies, i t seems to 
me, are completely ignoring the information management aspects of 
a n a l y t i c a l chemistry. I f I am wrong i n that perception, I would 
l i k e to know about i t . I think that i t seems to me to be the 
major impediment i n doing something more with the information. 
There i s data out there, and we shuff l e information back and 
f o r t h , and reports, and secretaries are kept busy, etc. How many 
i t e r a t i o n s does one have to go through before you get data into 
the f i n a l database. And then, are people even using databases f o r 
decisions?" 

From the audience i n a d i f f e r e n t regard, "Different analysts 
are producing d i f f e r e n t data sets which are pooled i n standard 
databases. For example, the the database of constituents and 
nutrients i n food i s one the Department of Agriculture maintains. 
Different people submit various a n a l y t i c a l l e v e l s of these 
quantities along with various pollutants l i k e pesticide residues 
and that sort of thing. The question i s how can these databases 
i d e n t i f y method bias which they do not now do? How would you 
i d e n t i f y the data elements that should e x i s t i n pooled data bases 
that would allow bias adjustment to be made?" You readers must 
search f o r that answer. 

Structure of Data. There i s another factor i n the analysis of 
materials that provide complicated r e s u l t s , materials containing 
hundreds of compounds, f o r example. The data has a structure that 
i s very hard to describe i n a simple way. Dr. S t a l l i n g puts i t 
t h i s way: 

"The chemometricians' tools and res o l u t i o n power has a 
tremendous ro l e to play i n expanding and c l a r i f y i n g the 
information that we get. There i s another side to the question 
and that i s that i t i s c r i t i c a l f o r the a n a l y t i c a l chemist to 
involve himself i n helping understand the structure of the data. 
I f I could t r y to define what I mean by the structure of the data, 
I might say t h i s : 'In the contamination of f i s h , i t i s not widely 
recognized that the contamination has a size-concentration 
dependency. The concentration of PCB, a persistent and 
complicated group of compounds, i n a f i s h c e r t a i n l y has a siz e 
factor i n i t . As a random sample, i t i s important to place i t i n 
the context f o r which the range of values f a l l , i . e., the mean 
and d i s t r i b u t i o n . I f we put that i n place of a population 
estimate, we see that there i s a factor involved i n those 
measurements.'" 

S t a l l i n g goes on to say: "In regards to PCB analyses there i s 
no problem i n showing the structure of 2 0 9 possible isomers i n a 
sample i f there i s minimal interference from other components. We 
can at least model t h i s data structure. That's c l e a r . What 
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Panel Discussion 261 

samples have s i m i l a r composition and concentration dependency can 
be very c l e a r l y described. No problem i n saying that t h i s group 
of samples has some s p a t i a l r e l a t i o n s h i p i f they are related to a 
process. That you can f i n d very quickly. The problem i n taking 
that piece of data obtained from the environment and coming up 
with how i t relates to a manufactured Aroclor mixture, however, 
can only be done, as f a r as I know, through t h i s PLS block 
method." 

Analysts i n the Educational Process 

Towards The Education of Analysts. Dr. S t a l l i n g expressed the 
view, I think there are two c r i t i c a l factors which are the error 
i n sampling estimates verses r e p e a t a b i l i t y estimates. Those are 
two d i f f e r e n t universes as f a r as I can see. Without preserving 
that information i n the f i n a l report that says the a n a l y t i c a l 
uncertainty i s such and such, a good deal of information i s l o s t . " 

Dr. S t a l l i n g went on to strongly state that the role of the 
i n t e r n a l standard has been very important i n reducing the range of 
agreement to 20-30$ fo r state-of-the-art residue analyses of 
di o x i n i n the environment. 

Dr. S t a l l i n g goes on to say, "'A picture i s worth a thousand 
words.' I would make a r e a l plea to present as much information 
as possible i n graphic format. I have come to the conclusion that 
understanding comes only by seeing and even less i n hearing. A 
mental image of the discussion brings i t much clear e r i n the case 
of discussing the environmental f a c t s . When you begin to see 
v a r i a t i o n s i n the data, over several graphical transformations, 
the analyst w i l l put up the f l a g i n 99$ of the cases. He sees 
some sort of bias or another component. In the case of our PCB 
modelling work we used 70 component matrix i n which we summed each 
of the 4,5, and 6 chlorine-containing compounds into a l i n e a r 
matrix f o r each sample f o r our model. Looking at that matrix i n a 
p a r t i c u l a r analysis case, we found there were four components, 
four major peaks, there that were not PCB's that f e l l completely 
outside of the d i s t r i b u t i o n of the rest of the PCB's. In some 
cases that was 20$ of the sum. Now, you know, there i s the 
beginning of a s i g n i f i c a n t l y wrong model i f we proceed without 
getting a better grasp of the data. Well, I want to express the 
thought that we must f i n d means and tools that are convenient to 
express the information i n complex analyses. And, personally, I 
am an overzealous advocate of the tools I have found. I don't 
care what you use as long as you can defend the picture and i t 
conveys the information." 

Education of the Manufacturer. Raw data needs to be preserved, 
and, as one s a i d , "Sometimes I emphasize to the instrument makers 
that today's microprocessors cannot be depended upon to stashing 
away raw data; they can't archive i t very w e l l , there, on the 
instrument. Besides you are stuck with the instrument that the 
makers supply us...we should have better c o n t r o l . " 
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2 6 2 TRACE RESIDUE ANALYSIS 

The p r e s e r v a t i o n o f raw data saved the day ( o r saved a week 
or a month) when an e r r o r i n software was d i s c o v e r e d by Dr. 
S t a l l i n g : "We were about 3 man-months i n t o t h i s b l o c k o f sample 
data; some 250 to 300 samples had been analyzed through a r o u t i n e 
procedure, c a l i b r a t i o n . I had begun to do t h i s p a t t e r n 
r e c o g n i t i o n work by l o o k i n g at the data with SIMCA. Suddenly I 
r e a l i z e d t h a t there was a bug i n the data base. Those numbers 
were wrong. The c o e f f i c i e n t s that were being e x t r a c t e d from the 
slo p e to the l i n e , r e l a t e d to the l a s t 3 samples, had reasonable 
s l o p e s , looked p r e t t y good, and were on good f l o p p y d i s k s . But 
they were wrong. The a r c h i v a l f a c t o r we b u i l t i n t o the data base 
s a i d to pr e s e r v e the o r i g i n a l and every p i e c e o f data as w e l l as 
the c a l c u l a t i o n a l g o r i t h m . W e l l , a f t e r about a week they had 
c o r r e c t e d the bug i n the program, and we were a b l e to go back 
a f t e r 4 -5 days to r e p r o c e s s a l l the d a t a . J u s t a n t i c i p a t e going 
to the d i r e c t o r and s a y i n g you know we j u s t l o s t 3 man-months when 
you are a l r e a d y 9 days behind s c h e d u l e . " 

Other problems with instruments i n c l u d e "many o f the newer 
ones convert n e g a t i v e numbers to z e r o s " , "you are l o s i n g 
i n f o r m a t i o n when you use the ins t r u m e n t s " , and "the n e c e s s i t y to 
get the raw m a t e r i a l out o f the instrument i n t o your own 
c a l c u l a t i n g d e v i c e i s v e r y important." "The instrument 
manufacturer has h i s own b i a s e s , data b i a s e s . I f the instrument 
i n t e r p r e t s and i f you read the i n t e r p r e t a t i o n o f f the instrument, 
you are stuck w i t h the manufacturer's a l g o r i t h m s and a t t i t u d e . " 

And then there i s the charge by Dr. K u r t z , "In a d i f f e r e n t 
way, i n s t e a d o f a p o i n t e s t i m a t e , can an instrument handle a range 
e s t i m a t e ? " 

From the g e n e r a l audience came t h i s comment: "Instruments 
today are not too compatible to t r a n s f e r i n f o r m a t i o n . There i s 
the RS-232 p o r t w i t h i t s 8 - b i t code and a l l s o r t s o f hand shaking 
and l i n e s to be hooked up p r o p e r l y . I t i s j u s t d i f f i c u l t to s e t 
up." And as we have a l r e a d y s a i d i n t h i s panel d i s c u s s i o n , "There 
are not adequate conventions f o r data communication and 
t r a n s p o r t a b i l i t y . I t h i n k t h a t the answer to t h a t i s t h a t the 
a n a l y t i c a l chemist and these people who are i n t e r e s t e d i n t h a t 
s o r t o f data exchange w i l l have to become extremely a c t i v e i n t h i s 
a r ea to r e f l e c t the needs o f the u s e r . " 

O f t e n l o s t i n the d i s c u s s i o n s are the e n a b l i n g methods needed 
f o r b r i n g i n g new methods i n t o common use. Dr. Kowalski o f f e r e d an 
unusual but e f f e c t i v e s u g g e s t i o n : "I b e l i e v e the f i r s t use i s by 
e d u c a t i o n o f the instrument companys' d i r e c t o r s and not the 
g e n e r a l p u b l i c . By p l a c i n g these techniques t h a t process the 
a c t u a l measurements b e f o r e them, they w i l l make b e t t e r p r o d u c t s . 
Those products w i l l be a b l e to do t h i n g s t h a t o t h e r products 
won't, and they w i l l s e l l b e t t e r . Then, a l s o , we should go alo n g 
and say that we should p r o v i d e the u n c e r t a i n t y o f these e s t i m a t e s . 
A l l r i g h t , but the acceptance o f these e s t i m a t e s takes the 
e d u c a t i o n o f the user you g e t . Now, i t ' s d i f f i c u l t to educate a l l 
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o f the people t h a t use a n a l y t i c a l data; i t i s very, v e r y d i f f i c u l t 
to do t h a t . I t i s a very slow p r o c e s s . Do you want to know how 
i t i s going to be done? I t w i l l be done, i t may take 50 y e a r s . 
The f i r s t s t e p i s going to be l o t e a s i e r ; there are f a r fewer 
instrument manufacturers than end u s e r s o f i n s t r u m e n t s . " 

E d u c a t i o n o f Managers. The i n s i g h t of Dr. S t a l l i n g i s seen: 
"...We make no e f f o r t to understand the continuum o f i n f o r m a t i o n 
u n t i l we g i v e i t to the a d m i n i s t r a t o r or u n t i l we g i v e i t to the 
guy whose job i t i s to prepare a model independent from me (the 
a n a l y s t ) when the q u e s t i o n s about the importance o f the data are 
asked. And I see the chemometrics t o o l as a b r i d g e between the 
people who are having to make the i n f o r m a t i o n judgments and 
p r o v i d i n g a mechanism of understanding the d a t a . " 

"In about 2-3 management steps the number no l o n g e r i s 15 
+/-5, but simply 15- They tend to drop r e f e r e n c e to the spread. 
Perhaps i t i s o n l y a matter o f e d u c a t i o n . I f we c o u l d b r i n g about 
a change so t h a t a number has any meaning at a l l o n l y when the 
u n c e r t a i n t i e s are a t t a c h e d to i t . . . " 

Dr. C u r r i e capped t h i s d i s c u s s i o n : "Put the u n c e r t a i n t y 
statement f i r s t so the other p a r t may be f o r g o t t e n . " 

E d u c a t i o n o f the L e g i s l a t o r s and R e g u l a t o r s . From one 
p a r t i c i p a n t : "The a n a l y t i c a l chemist i s asked to make a 
measurement l e v e l o f a compound i n the environment. He p r o v i d e s 
t h a t to another p r o f e s s i o n a l , such as an i n d u s t r i a l t o x i c o l o g i s t , 
who then has to i n t e r p r e t t h a t r e s u l t , make c e r t a i n p o l i c y 
d e c i s i o n s on i t , and e x p l a i n i t to the p u b l i c . And y e t the 
i m p l i c a t i o n s o f the i n i t i a l q u e s t i o n are t h a t the a n a l y t i c a l 
chemist has a c o n t r i b u t i o n to make i f he i s aware o f t h a t i n i t i a l 
q u e s t i o n . I am impressed i n the manner i n which the d i a l o g u e i s 
c a r r i e d out i n the p u b l i c ... i n an atmosphere o f t o t a l informa
t i o n a l b l a c k o u t . The i m p l i c a t i o n s o f the data t h a t the a n a l y t i c a l 
chemist r e a l l y possesses i s not brought i n t o the d i a l o g u e . " 

Dr. M i t c h e l l : "That i s o f t e n the t r u t h and I guess i t i s a 
p o l i t i c a l q u e s t i o n . I ought to comment on i t . We've done s t u d i e s 
i n our p l a c e which c o u l d n ' t , i n e f f e c t , p o s s i b l y p r o v i d e u s e f u l 
i n f o r m a t i o n , and i t d i d n ' t . So we should c h a l l e n g e these r e s u l t s 
to be t r u t h f u l . " 

He c o n t i n u e s : "We generate our numbers a l l r i g h t . We feed 
our numbers to people who are t r y i n g to r e l a t e them to h e a l t h 
e f f e c t s . So, no matter how bad i t i s what we have, they are i n a 
much worse s i t u a t i o n , and most o f the time they don't know q u i t e 
what they want... 

"There are a couple o f motives t h e r e . The persons making 
th a t d e c i s i o n may w e l l have d i f f e r e n t motives from y o u r s . You 
must s t i c k t h a t c o n f i d e n c e statement i n because someone w i l l then 
proceed and make a d e c i s i o n . At some l a t e r p e r i o d he may w e l l 
d i s c o v e r t h a t the d e c i s i o n was s t u p i d , and they are going to look 
f o r someone to blame. I have some r e a l b e a u t i e s . " 
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2 6 4 TRACE RESIDUE ANALYSIS 

Another commentator adds, "Lots of time the decision-making 
process i s r e a l l y c lear ... i t i s not the person you t a l k to but 
two managers above or a fellow i n the l e g i s l a t u r e who s t a r t s 
quoting data. They believe the s c i e n t i s t i s some sort of 
manageable block and a l l of a sudden your number i s going to be 
God's word. You are going to have to be protected i n what you 
report." 

A d i f f e r e n t aspect was also brought out: " . . . A l l your data 
has to go someplace, though. When you leave your spot, and a 
s i m i l a r professional has to go back to your data and look at i t , 
he has to fi n d a l l the information. "That part has to be retained 
somewhere." 

Analysts i n the P o l i t i c a l / S o c i a l Scene 

In t e r a c t i o n of the Analyst with the Submitter of Samples. Dr. 
M i t c h e l l continues: "The a n a l y t i c a l chemist cannot operate i n a 
vacuum. The requester has to convey what he intends to use that 
information f o r and that goes into public p o l i c y sorts of things. 
I think that begs the question as to what i s the rol e and what 
sorts of things should the a n a l y t i c a l chemist and chemometrician 
do to convey knowledge or i n t e l l i g e n c e to the generally 
unsophisticated public or the nontechnological p u b l i c , i f you 
w i l l . " 

A comment from the audience set the stage f o r the need to 
int e r a c t with the submitter of samples. He sa i d , "Your report 
should also r e f l e c t somewhat the experimental design from which 
your data was obtained, f o r example, by a ce r t a i n instrumental 
method. I t should be re f l e c t e d i n i t because without that 
information i t i s quite often misleading information f o r someone 
who i s going to use i t but doesn't know how i t was obtained. I f I 
don't know how i t was obtained, I don't know i f i t i s of any 
importance. Even though I was given the experimental range, I 
don't know the meaning of i t without having an idea from where i t 
came." 

"There i s n ' t enough involvement of the a n a l y t i c a l chemist 
with the people providing the sample, those who are designing a 
so l u t i o n or who want the answer to a p a r t i c u l a r question. We are 
often answering a d i f f e r e n t question from what i s to be answered. 
We get the sample, we analyze i t c a r e f u l l y , and we put error 
l i m i t s , p r o b a b i l i t y , and confidence i n t e r v a l on i t . That 
confidence i n t e r v a l may not be the confidence i n t e r v a l on the 
population you are looking at ... the patient, f o r example, or the 
environment. What we need to do, I think, i s to get chemometrics 
to be more involved i n the design of the proper question and i n 
formulating how we can best answer that. Quite often I don't 
think our a n a l y t i c a l method needs to be as precise perhaps, or as 
expensive as we have used. We can often use a cheaper, less 
expensive, and maybe less precise method and s t i l l answer the 
question that you need to answer." 
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"Yes, they are handing you a bucket and saying, ' T e l l me 
what's i n t h i s . ' ' I ' l l t e l l you what's i n i t when you t e l l me 
what your going to do with i t . ' " ... Dr. M i t c h e l l . 

And put a l i t t l e less b l u n t l y was the comment: "In c l i n i c a l 
chemistry one requests a test to be done and a r e s u l t to come 
back. Yet, the i n t e r p r e t a t i o n of that r e s u l t and the confidence 
i n i t depends an awful l o t on the goals and objectives of the 
requester of the t e s t . The proposal has been made somehow we 
should be exchanging goals and objectives between the requester 
and performer." 

Dr. Kowalski put the problem i n another way. He sa i d , " I f I 
need to be 19 out of 20 r i g h t or 99 out of 100 r i g h t , I should 
give my answer e i t h e r as a 'yes' or 'I can't say'. The t i g h t e r 
you put the confidence, the more I am going to say 'I can't say'." 

Another way of phrasing that, i s , " I f you are going to have 
surgery and you want to have such or such a percentage of 
sur v i v i n g , i t may be that you have a tradeoff i f you don't do the 
surgery. How do you give the patient a picture of what the 
tradeoffs are?" 

In t e r a c t i o n of Analyst with Other User. A number of statements 
have already been made on t h i s topic. One aspect yet to be 
addressed i s the desire f o r r e s u l t s to be expressed i n a single 
number. "I think i t i s a serious problem. I have l o t s of people 
who say they want an average; they don't want three numbers nor 
ten numbers. They want one number they c a l l average." 

To that i t was brought out that "we have been attached to 
t h i s idea for so long, we can't think of any other way of 
expressing a r e s u l t . Yet, we are now opening our minds to r e a l i z e 
that i t i s a d i s t r i b u t i o n . In my f i e l d there i s a reluctance to 
do t h i s , that somehow i f you have a large variance, your data i s 
bad. I see people running around saying that they want to express 
t h e i r r e s u l t as a standard error or a standard deviation because, 
i f i t i s larger or smaller, i t would look better." 

S i g n i f i c a n t d i g i t s are often forgotten. "A l o t of data we 
generate gets passed out p o l i t i c a l l y . I f we have a tendency to 
provide too much data, there i s an urge f o r people to use 3 or 4 
s i g n i f i c a n t figures from experiments that r e a l l y should not allow 
you more than one or two. I t can get back to you at a l a t e r time 
i n an embarrassing way as i f you were o r i g i n a l l y accurate to that 
place." 

Where Data i s Used. Data i s used i n such a wide v a r i e t y of 
places that there may be d i f f i c u l t y i n even putting data i n a 
single form. These comments speak to that point: 

"One breakdown i n terms of goals and objectives that has been 
brought out i s that one uses test r e s u l t information for 
diagnostic purposes to determine the problem, another for 
developing a prognosis of the eventual outcome, and a t h i r d f or 
management of a course of therapy. For example, i f you are 
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2 6 6 TRACE RESIDUE ANALYSIS 

interested i n management of a course of therapy, you may be 
interested i n knowing i f a patient i s taking h i s medicine, and i f 
he i s taking h i s medicine, the re s u l t s may be f a i r l y gross, e i t h e r 
up or down. In t h i s case the analyst r e a l l y doesn't have to go 
through large contortions to deal with very exact measurements. 
So that, convey that kind of information that allows the analyst 
to say that the p a r t i c u l a r r e s u l t i n hand can indicate that the 
patient i s or i s not i n the therapeutic range without having to go 
through agreements. That's r e a l l y what the requester i s 
interested i n . In diagnosis i t may be much more c r i t i c a l because 
you may be combining a number of things, propagation of error and 
t h i s sort of thing, and may be very c r i t i c a l as to the outcome." 

In a completely d i f f e r e n t area, the s e t t i n g of minimum 
detectable l e v e l s , the p o l i t i c a l l y expedient method may be counter 
productive to the expansion of knowledge. Dr. Kurtz related an 
example of t h i s : "We had a l o c a l manufacturer dribble amounts of 
kepone and mirex i n the l o c a l streams from waste disposal on t h e i r 
s i t e . At one point a few wells of homeowners along the stream 
were found to contain kepone at l e v e l s i n the low parts per 
t r i l l i o n . Later i n annual state t e s t i n g programs these wells were 
found not to contain any kepone. Was there a lowering of 
contamination? What had probably happened was that the minimum 
detectable l e v e l was set above most of these early l e v e l s , and the 
l a t e r samples were less than t h i s minimum l e v e l . I t took on a 
suspicious a i r that the state had purposely set t h i s l e v e l to 
avoid future controversy i n t h i s area." 

There are always these problems of getting s o c i a l l y involved. 
"How can not the a n a l y t i c a l chemist get involved since he knows so 
much about the sample that others simply do not know. Whether a 
person puts a charcoal f i l t e r on his water supply or not puts an 
e n t i r e l y d i f f e r e n t q u a l i t y i n the understanding of the problem. 
In c l i n i c a l chemistry every method i s d i f f e r e n t . Even the 
instrument used has ce r t a i n values f o r controls such that 
d i f f e r e n t values r e s u l t from the a n a l y t i c a l process." 

Then, Dr. M i t c h e l l h i t s on another problem: "There i s a 
p r a c t i c a l problem for a commercial lab. This i s that you wouldn't 
want to be the f i r s t boy i n the block to stand up and admit the 
[poor] q u a l i t y of your data because no one else i s doing that, and 
you are going to look a l o t worse i f you are honest. So, I guess 
that i s a r e a l psychological block f o r developing data. The 
t r a n s i t i o n period i s going to be rough." 

Another person brought out the problems where the community 
user i s separate and d i s t i n c t from the analyst. "Again, you are 
getting back to the d i f f e r e n t l e v e l s of i n t e r p r e t a t i o n that the 
analyst who does the measurement, the intermediate, and the top 
l e v e l user community a l l have d i f f e r e n t forms of the answer. Each 
one has to be placed i n t h e i r frame of reference. That i s a very 
d i f f i c u l t problem. The state department d i r e c t o r of health, f o r 
example, i s interested i n sort of s i m p l i f i e d or b u l l e t i z e d 
information, i f you w i l l . " 
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Panel Discussion 267 

The whole issue of needed data, as Dr. Currie pointed out, 
was addressed i n a recently published report by the American 
Chemical Society. "Improving the R e l i a b i l i t y and A c c e p t a b i l i t y of 
A n a l y t i c a l Chemical Data Used f o r Public Purposes," published by 
the Joi n t Board/Council Committee on Science of the ACS i n May 
1982 (see also C&EN 1982, 60 ,(23) 44. I t t r i e d to re l a t e 
chemical a n a l y t i c a l measurements to s o c i o - p o l i t i c a l and regulatory 
needs. 

Assessing Risk. There i s always "the r i s k of being wrong. I f 
you are wrong, and you proclaim i t , people are going to do 
something that probably costs money." 

"So, I think i t i s i n t e r e s t i n g i n that the analyst cannot 
r e a l l y operate i n a vacuum; the requester of the information f o r 
the eventual consumer user of that information has to somehow 
convey what he intends to use that information f o r . That goes 
into public p o l i c y sorts of things to sort of pick up on the theme 
of Dr. Zervos. I think that begs the question as to what i s the 
role and what sorts of things should the a n a l y t i c a l chemist and 
chemometrician do to convey knowledge or i n t e l l i g e n c e to the 
generally unsophisticated public or the nontechnological p u b l i c , 
i f you w i l l . " 

"That i s a general problem that we a l l follow ... r e l a t i v e 
r i s k , " concludes Dr. M i t c h e l l . "... a massive problem i n the 
environmental f i e l d . I think that i f you present a p a r t i c u l a r 
r e s u l t , you have to sort of prove that context. I think people 
have to understand that there i s n ' t just one side. You can't have 
your cake and eat i t , too." 

RECEIVED April 16, 1985 
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Listing of Data Sets 
Appendix A 

Fenvalerate "Unknown11 Data Sets (Electron Capture Data): 

Dataset A. This data set represents good data but only in 
duplicate at each l e v e l . 

Response Amount,ng Response Amount,ng 

1.15 0.05 1.07 0.05 
6.30 0.25 5.64 0.25 
29.9 1.00 27.5 1.00 
197. 5.0 198. 5.0 
881. 20. 884. 20. 

Dataset B. This data set represents good data taken over a two 
day period with environmental samples and standards interspersed. 
Compare with Dataset C. 

Response Amount,ng 

1.13 0.05 
6.55 0.25 
29.7 1.00 

211. 5. 
929. 20. 

1.23 0.05 
7.98 0.25 

30.0 1.00 
204. 5.0 
905. 20. 

1.22 0.05 
6.54 0.05 

30.1 1.00 

Response Amount,ng 

212. 5.0 
922. 20. 

1.20 0.05 
6.37 0.25 
29.5 1.00 

213. 5.0 
928. 20. 

1.12 0.05 
7.96 0.25 

29.1 1.00 
205. 5.0 
919. 20. 

0097^6156/ 85/0284-0269S06.00/0 
© 1985 American Chemical Society 
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2 7 0 TRACE RESIDUE ANALYSIS 

Fenvalerate "Unknown" Data Sets - Continued 

Dataset C. This data set is i l lustrative of data obtained with 
an equipment malfunction such that the response on one day was 
significantly different from the earlier day. Day one data 
regresses to a line parallel to day two data. Compare with 
Dataset B. 

Response Amount,ng Response Amount,ng 

1.43 0.05 1.79 0.05 
7.25 0.25 7.96 0.25 

35.2 1.00 36.4 1.00 
225. 5.0 242. 5.0 
986. 20. 1051. 20. 

1.00 0.05 1.97 0.05 
5.57 0.25 8.12 0.25 

27.5 1.00 37.2 1.00 
192. 5.0 247. 5.0 
914. 20. 1072. 20. 

Dataset D. In this data set the compound sought had super
imposed near i t an artifact peak such that at at lower levels 
the response values were significantly inflated. Compare with 
Dataset E. 

Response Amount,ng Response Amount,ng 
2.34 0.05 1.71 0.05 
6.39 0.25 7.36 0.25 

21.6 1.00 25.0 1.00 
146. 5.0 145. 5.0 
692. 20. 687. 20. 

1.26 0.05 0.63 0.05 
4.76 0.25 4.41 0.25 

20.0 1.00 21.9 1.00 
146. 5.0 146. 5.0 
694. 20. 704. 20. 
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Appendix 271 

Fenvalerate "Unknown" Data Sets - Continued 

Dataset E. This data set i s the same as Dataset D except that 
a r t i f a c t peak data was removed. Compare with Dataset D. 

Response Amount,ng Response Amount,ng 

21.6 
146. 
692. 

4.76 
20.0 
146. 
694. 

1.00 
5.0 

20. 

0.25 
1.00 
5.0 

20. 

25.0 
145. 
687. 
0.63 
4.41 
21.9 
146. 
704. 

1.00 
5.0 

20. 
0.05 
0.25 
1.00 
5.0 

20. 

Dataset F. This short range set of data i s an example of 
reasonably good routine data with minimal sample size. 

Response Amount,ng Response Amount,ng 

2.17 
9.26 

36.9 
212. 

0.05 
0.25 
1.00 
5.0 

1.99 
9.67 

37.4 
221. 

0.05 
0.25 
1.00 
5.00 

Fenvalerate Data Set (Electron Capture Data): 

Response 

0.95 
6.11 
24.5 
122. 
753. 

2970. 
1.15 
6.21 

24.7 
124. 
755. 

3017. 
1.05 
6.17 
24.3 
125. 
732. 

2935. 

Amount,ng 

0.05 
0.25 
1.00 
5.0 

25. 
100. 
0.05 
0.25 
1.00 
5.0 

25. 
100. 
0.05 
0.25 
1.0 
5.0 

25. 
100. 

Response 

1.03 
5.87 

24.3 
127. 
755. 

3106. 
0.97 
6.30 
23.7 
129. 
745. 

3077. 
1.02 
5.82 

24.1 
123. 
720. 

3028. 

Amount,ng 

0.05 
0.25 
1.00 
5.0 

25. 
100. 
0.05 
0.25 
1.00 
5.0 
25.0 

100. 
0.05 
0.25 
1.0 
5.0 

25. 
100. 
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272 TRACE RESIDUE ANALYSIS 

Chlorothalonil Data Set (Electron Capture Data); 

Response Amount,ng Response Amount,ng 

2.56 
15.6 
56.8 

265. 
949. 

2113. 
2.42 
15.4 
57.5 

261. 
972. 

2149. 
2.49 

12.1 
53.6 

0.02 
0.10 
0.40 
2.0 
8.0 

20. 
0.02 
0.10 
0.40 
2.0 
8.0 

20. 
0.02 
0.10 
0.40 

269. 
977. 

2143. 
2.40 
12.2 
54.6 

266. 
955. 

2181. 
2.68 
13.2 
56.2 

274. 
988. 

2277. 

2.0 
8.0 

20. 
0.02 
0.10 
0.40 
2.0 
8.0 

20. 
0.02 
0.10 
0.40 
2.0 
8.0 

20. 

Chlorpyrifos Data Set (Flame Photometric Data): 

Phosphorus mode with no electronic f i l t e r i n g . 

Response 

1.06 
4.89 
19.5 
98.9 

451. 
1.06 
4.85 
19.5 
97.9 

437. 
1.02 
4.98 
19.4 
97.3 

438. 

Amount ,ng 

1 
5 
20 
100 
500 

1 
5 

20 
100 
500 

1 
5 
20 
100 
500 

Response 

0.91 
5.14 
19.6 
98.1 

441. 
1.02 
5.01 
19.7 
95.9 

430. 
1.09 
5.07 

20.3 
99.1 

434. 

Amount,ng 

1 
5 
20 
100 
500 

1 
5 
20 
100 
500 

1 
5 
20 
100 
500 
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Appendix 273 

Kepone Data Set (Electron Capture Data): 

Response Amount,ng Response Amount,ng 

0.73 0.01 24.9 0.375 
2.59 0.05 61.8 1.0 

12.1 0.20 0.79 0.01 
24.0 0.375 2.86 0.05 
60.0 1.0 12.5 0.20 
0.82 0.01 25.5 0.375 
2.90 0.05 60.6 1.0 

11.5 0.20 

For a d d i t i o n a l raw data on Arochlor PCB analyses of transformer 
o i l s , see Chapter 12 i n thi s book. 

RECEIVED March 2 5 , 1985 
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278 TRACE RESIDUE ANALYSIS 

Calibration—Continued 
risks to data quality, 116-18 
spline function, testing of 

accuracy, 170-76 
Calibration curve(s) 
amount and estimated amount 

intervals, comparison, 183-93 
confidence bands around the 

curve, 120f 
construction, 169 
detection limits, 73-80 
determination, 55-56,185 
fenvalerate, 67f 
linear, 58-61 
one-dimensional, pesticide 

detection, 57-67 
Calibration-curve-based analysis 
method development, 130f 
use of multiple-curve and weighted 

least-squares procedures with 
confidence band 
statis t i c s , 115-31 

Calibration data 
determination of iron in water, 117f 
extrapolation caveat, 159 
hypothetical, 1l8f 
modeling, 134 

Calibration problems 
proposed solutions, 116,119 
use of cubic spline functions for 

solving, 167-80 
Chemical analysis, many dimensions of 

detection in, 49-80 
Chemometrics 

applications, 101-2 
definition, 236 
institution of, for analytical 

use, 253-67 
resolution vs. physicochemical 

analysis, 68-70 
Chlordecone 

applications, 135 
power transformation, 146 

Chloride, determination in blood, 127f 
Chlorothalonil 

applications, 135 
data set, 272 
power transformation, 146 
transformed-response variances, I44t 

Chlorpyrifos 
applications, 135 
data set, 272 
power transformation, 146 

Chromatogram, description, 102 
Chromatographic data 

applications of SIMCA, 210-18 
matrix of, 204f 

Chromatographic detection, 134 

Chromatography 
calibration problems, 133-34 
correlation, theory of, 83-99 

Classical assumptions for f i t t i n g 
regression lines, 43 

Classical sampling problem, 
description, 43 

Classification problems, use of 
SIMCA, 216,219-20 

Clustering 
class of identical samples, 205f 
three classes of samples, 207f 

Columbia National Fisheries Research 
Laboratory, studies of PCBs, 196 

Composite samples, description, 8 
Concentration calculations, general 

analytical plan, 136-37 
Confidence i n t e r v a l s ) 

analyses of t r i f l u r a l i n content of 
fi e l d s o i l , 29 

calculation, 152-54 
calibration-curve detection 

limits, 79-80 
construction, 179-80 
definition, 153 
determination of fenvalerate, 179t 
inverse-transformed data, 152t 
regression on transformed 

data, 133-64 
spline functions, 170 
statistics, use in calibration-

curve-based analysis, 115-31 
transformed data, 154t 
use in reporting data, 255 

Confidence level, choice of, in scien
t i f i c studies, 247-48 

Conjectures, role and contribution to 
scien t i f i c research, 237-38 

Constant variances, 145-46 
Correlation 

definition, 83 
weights, and standard errors, 

calibration-curve detection 
limits, 77-78 

Correlation chromatograph 
schematic, 88f,105f 
setup, 106-7f,109f 

Correlation chromatography 
application in trace 

analysis, 101-13 
background, 83-87 
description, 102 
principals, 102-6 
problems, 95-99 
theory, 83-99 

Correlation coefficient(s) 
description, 85-86 
vs. tau, 86, 87f 
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INDEX 279 

Correlation coefficient—Continued 
t r i f l u r a l i n disappearance 

rate, 32-33 
Correlation HPLC system, setup, 109f 
Correlation noise, correlation 

chromatography, 96 
Correlogram(s) 

construction, 89-93 
description, 102 
separation of phenols, 110f 

Covariance, t r i f l u r a l i n content of 
fi e l d s o i l , analysis of, 33 

Cross-correlation function 
definition, 86 
two power signals, 103 

Cross validation, spline 
functions, 170 

Cubic spline function(s) 
representation, 168-69 
for solving calibration 

problems, 167-80 
variance estimation, 185 

D 

Data bases, problems with, 259-60 
Data pretreatment, SIMCA, 208 
Decision criterion, hypothesis 

testing, 51 
Decision flow chart, examples, 45-57 
Decision level(s) 

calibration curve, 73-80 
pesticide detection, 58-59 

Decision rules for societally impor
tant study systems, 246-50 

Decision strategies, gating 
hypothesis, 244-45 

Decision theory, in metrics, 241 
Design and measurement descriptions, 

use in reporting data, 256-57 
Detectable signals, reporting, 

regulations, and practical 
implications, 56-57 

Detection in chemical analysis, many 
dimensions of, 49-80 

Detection limit(s) 
analysis of phenol and 

dimethylphenol, 108 
calibration curve, 73-80 
defining of, 49-50 
hypothesis testing, 51 
pesticide detection, 59 

Detector signal 
cross correlation with the sampling 

code, 96 
cross correlation with the valve-

position code, 89 
Dieldrin, pathways and rate of loss 

from grass-meadow s o i l , 15-21 

Disjoint principal components 
models, 206 

Distributions found in nature, 9-10 

E 

Emulsifiable concentrate of herbicide, 
s o i l treatment with, 26 

Environmental applications, 
SIMCA, 223-26 

Error propagation, fenvalerate detec
tion limits, 66 

Error terms, analytical model, 53,54t 
Estimated amount interval(s) 

and bandwidth data, 189-91 
calibration graphs, 

comparison, 183-93 
differences determined from three 

methods, 188-89 
inverse-transformed data, 157-59 

Estimated concentration, pesticide 
detection, 58 

Estimated-response error bounds, 
inverse-transformed data, 155-56 

Estimation 
minimum number and size of sample 

increments, 10-12 
number and size of increments for a 

segregated population, 12-13 
sample size when form of population 

distribution i s unknown, 14 

F 

False positive decisions, in 
toxicology, 246 

False positive and negative risks, 
hypothesis testing, 50-51 

Federal Working Group on Pest 
Management, 5-6 

Fenvalerate 
applications, 135 
calibration curve, 67f 
calibration data for GC 

measurement, 61-63 
data sets, 184,269-71 
detection limits, 63,65-67 
determination by GC, 125f 
power transformation, 146 
transformed-response variances, I43t 
use of spline functions in deter

minations of, 174,177-79 
Field layout and management, t r i 

f l u r a l i n disappearance study, 26 
Field s o i l , t r i f l u r a l i n 

disappearance, 25-35 
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280 TRACE RESIDUE ANALYSIS 

First-order least-squares curves, 
inappropriate use of, 117f 

First-order regression 
algebraic equations for, 121t 
models, 45-47 

Flow charts, outlier 
processing, 38,40-42,44 

Fractional composition histograms 
PCB mixture, 212f,222f 
transformer fluid, 222f 

G 

Gas chromatography (GC) 
analysis of PCB residues, 197-98 
analysis of PCBs and transformer 

o i l s , 227-32 
determination of fenvalerate, 125f 

Gating hypothesis, decision 
strategies, 244-45 

Gaussian distribution, 9-10 
Geometrical constructs, evaluation of 

sample similarity, 208 
Granular formulation of herbicide, 

s o i l treatment with, 26 

H 

Half-lives, t r i f l u r a l i n 
formulations, 33 

Hand plotting of data, 186-88 
Hartley test, constancy of 

variance, 145 
Herbicide(s) 

application methods, 34 
distribution in f i e l d s o i l , 

effect on sampling, 34 
High-performance liquid chromatography 

(HPLC), separation of 
phenols, 109f 

Hypothesis testing 
analytical chemistry, 242-44 
metrics, 239 
scalar signals, 50-52 
toxicology, 241-42 

Hypothetical mixture, changes in 
fraction composition due to 
decreasing concentration, 215t 

I 

Ideal analytical model, deviations 
from, 53 

Interval estimate(s) 
concentration calculations, 142 
unknown amounts, description, 156 

Intraclass correlation coefficient, 
definition, 13 

Inverse-transformed data 
confidence intervals, 152t 
estimated amount intervals, 157-59 
response error bounds, 155-56 
transformation to real 

values, 159-60 
Irregularity of distribution of 

herbicides in f i e l d s o i l , 
causes of, 34 

Isomer-specific analysis of PCBs, 
application of SIMCA, 195-232 

Isomer structure assignment, response 
factors, and concentration, PCB 
mixture, 202-3t 

K 

Kepone 
data set, 273 
transformed-response variances, I43t 

Knots, spline functions, 168-69 

L 

Laboratory analysis, systematic error 
in, 257-58 

Lead, determination in 
blood, 123f,127f 

Least-squares procedures, weighted, 
use in calibration-curve-based 
analysis, 115-31 

Least-squares regression, 
requirements, 134 

Legislators, education of, use of 
chemometrics, 263-64 

Limit of detection, defining of, 49-50 
Linear calibration curve(s) 

confidence bands from regression on 
transformed data, 133-64 

decision and detection, 58-61 
Linear regression models, 138,151f 

M 

Management and fi e l d layout, t r i 
f l u r a l i n disappearance study, 26 

Managers and manufacturers, education 
of, use of chemometrics, 261-63 

Mathematical methods, outlier 
processing, 44t 

Mathematical models, calibration-
curve-based analysis, 119,122-24 
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INDEX 281 

Matrix equation, representation of 
calibration, 59 

Maximum reportable concentration 
iron in water, 128f 
measurement of, 129 

Mean values 
calculation of, 254-55 
t r i f l u r a l i n content of fi e l d 

s o i l , 28-31 
Measurement and design descriptions, 

use in reporting data, 256-57 
Metrics 

definition, 236-37 
history, 239 
hypothesis formulation and 

testing, 239 
Minimum detectable bias, 

definition, 13 
Minimum reportable 

concentration, 126-129 
Model selection 

for accuracy, 189 
regression, 160 

Modeling power, definition, 206 
Multidimensional data 

intercomparisons, 70-71 
Multidimensional signal, chemical 

analysis, 69 
Multiple-curve procedures, use in 

calibration-curve-based 
analysis, 115-31 

Multiple peak, correlation 
chromatography, 91-92,93f 

Multispectral sorting, example, 68 
Multivariate environments, 256 
Multivariate problem, description, 43 

N 

Negative binomial distribution, 9-10 
Neymann-Pearson process of s t a t i s t i c a l 

hypothesis testing, 238 
Noise addition, correlation 

chromatography, 92, 94-95 
Nonconstant variance 

correction for, 122-26 
treatment of, 144 

Nonlinear calibration curves, 61 
Nonlinearity, correlation 

chromatography, 96 
Nonnegligible errors, calibration-

curve detection limits, 74-76 
Nontransformed regression, comparison 

to transformed regression, 161 
Normalization 

data in t r i f l u r a l i n disappearance 
study, 32-33 

SIMCA, 208-9 
transformation equations, 44 

Null hypothesis 
analytical chemistry, 243-44 
toxicology, 241-42 

Number crunching, in scie n t i f i c 
studies, 258-59 

0 

Observed response, analytical 
model, 52 

One-dimensional calibration curve 
detection in chemical 

analysis, 49-80 
detection of pesticides, 57-67 

One-sided normal standard percentiles, 
hypothesis testing, 51 

Optimal amount transformation, conver
gence for the determination of 
data linearity, l48t 

Outlier processing 
automatic processing of standard 

data, 38-43 
factors influencing choice of 

strategy, 38 
flow charts, 38,40-42,44 
strategies, 37-38,39f 

P 

Partial least-squares method, predic
tion of composition of unknown 
samples, 220-23 

Partial peak summary of replicate 
analyses, PCB mixture, 211 

Pesticide analysis, application of 
sampling theory, 15-21 

Pesticide detection, one-dimensional 
calibration curve, 57-67 

Phenol(s) 
calibration graph, 111 f 
correlogram, 110f,112f 
separation by HPLC, 109f 

Physicochemical analysis vs. 
chemometric resolution, 68-70 

Pictures, use in reporting data, 256 
Point estimate of unknown amounts, 

description, 156 
Poisson data, normalization of, 44 
Poisson distribution, 9-10 
Polychlorinated biphenyls. (PCBs) 

calculation of composition, 209-10 
Columbia National Fisheries Research 

Laboratory studies, 196 
data base, 198-200 
description, 195 
in the environment, 195-96 
fractional composition 

histograms, 212f,222f 
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282 TRACE RESIDUE ANALYSIS 

PCBs—Continued 
fractional composition in trans

former o i l s , 223 
gas chromatogram, 201f 
gas chromatographic 

analysis, 197-98,227-32 
isomer-specific analysis of, 

application of SIMCA, 195-232 
isomer structure assignment, 

response factors, and 
concentration, 202-3t 

partial peak summary of replicate 
analyses, 211 

principal components 
plots, 213,217f,219f 

residues, 196 
s t a t i t i s c a l summary for SIMCA 

analysis, 221 
thermal conversion to 

polychlorinated 
dibenzofurans, 196 

variable loadings, 2l4f 
Polychlorinated dibenzofurans, thermal 

conversion of PCBs to, 196 
Power transformation 

chlordecone, 146 
chlorpyrifos, 146 
fenvalerate, 146 
variance stabilization, 185 

Precision 
improvements, 126-30 
measurements, 115-16 

Prediction, composition of unknown 
samples, 156-57,220-23 

Principal components method, applica
tion in isomer-specific analysis 
of PCBs, 195-232 

Principal components models, 204-6 
Principal components plot(s) 

description, 207-8 
PCB mixture, 213,217f,219f 
transformer flu i d , 219f 

Protein binding assays, use of spline 
functions, 171 

Pseudorandom binary sequences, 
correlation 
chromatography, 91-92,104-6 

R 

Radioimmunoassay standard curves, use 
of spline functions, 171-72 

Random errors, in analysis, 
description, 6 

Random noise, correlation 
chromatography, 104 

Random sampling, 7-8 

Random sampling—Continued 
accuracy, 160-64 
analysis of t r i f l u r a l i n disap

pearance rate, 32-33 
calibration data modeling, 134 
classical assumptions for f i t t i n g 

lines, 43 
coefficients for transformed 

data, 150t 
estimated amount bandwidths at 

various responses, l87t,190t 
first-order calculations, 121t 
first-order models, 45-47 
model selection, 160 
residuals vs. transformed amount, 

examination of, 150,152 
on transformed data, 133-64 

Regularization, SIMCA, 209 
Regulators, education of, use of 

chemometrics, 263-64 
Relative confidence bandwidth 

definition, 126 
determination of chloride and lead 

in blood, 127f 
Relative standard deviation, deter

mination of chloride and lead in 
blood, 127f 

Representative sample, description, 8 
Residues of PCBs, 196 
Response error bounds 

calculation of, 155-56 
inverse-transformed data, 155-56 

Response transformation, 142-45 
Risk assessment, problems of, 267 
Routine chemical analysis, 

description, 115 

S 

Sample analysis data quality, measure
ment of, 126 

Sample increments, estimation of 
minimum number and size, 10-12 

Sample loading terms, plots of, 207-8 
Sample size when form of population 

distribution is unkown, 
estimation, 14 

Sampling 
for chemical analysis of the 

environment, s t a t i s t i c a l 
considerations, 5-22 

correlation chromatography, 95-96 
definition of constant, 11 
measurements of t r i f l u r a l i n disap

pearance from f i e l d s o i l , 25-35 
for pesticides and pesticide 

residues, problems, 5-6 
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INDEX 283 

Sampling—Continued 
theory of, application to pesticide 

analysis, 15-21 
Scalar signals, hypothesis 

testing, 50-52 
Scientific method of inquiry 

overview, 237-40 
value foundations, 240-44 

Scientific thinking, role of 
statis t i c s , 2 

Second-order least-squares curves, 
inappropriate use of, 117f 

Segregated population, estimation of 
number and size of 
increments, 12-13 

Signal detection, analytical model, 55 
Signal enhancement, trace 

analysis, 108 
Signal-to-noise ratios, correlation 

chromatography, 89,95 
Single-impulse chromatography, 

description, 102 
Single-peak correlation 

chromatography, 86,88-91 
Single-pulse chromatogram, 89 
Smoothing parameters, spline 

functions, 169,171-74 
Soft independent method of class 

analogy (SIMCA) 
applications to chromatographic 

data, 210-18 
applications in isomer-specific 

analysis of PCBs, 195-232 
environmental applications, 223-26 
general discussion, 200,202,204-6 
software availability, 226 
use in classification 

problems, 216,219-20 
Spline function(s) 
amount bandwidths and 

ranges, 191-92t 
calculation with pesticide 

data, 174,177-79 
cubic, for solving calibration 

problems, 167-80 
determination, 168-71 

Standard deviation(s) 
Bonferroni interval estimates, 140 
correlation, and weights, 

calibration-curve detection 
limits, 77-78 

transformed data, 150t 
t r i f l u r a l i n content of f i e l d 

s o i l , 28-31 
Statistics 

historical development, 1-4 
methodology, 142 
use in calibration, 138-42 
use in processing of outliers, 34-47 

Regression 
use in sampling for chemical 

analysis of the 
environment, 5-22 

Stochastic signal, correlation 
chromatography, 103-4 

Straight-line calibration, 
equation, 58 

Structure of data, problems 
with, 260-61 

Subsamples, inconsistent, detection 
of, 43-44 

Systematic errors 
description, 6 
laboratory analysis, 257-58 

Systematic sampling, 7-8 

T 

Table of random numbers, 8 
Target population, identification, 7 
Theory testing procedures, 238-39 
Toxicology 

false positive decisions, 246 
hypothesis testing, 241-42 
null hypothesis, 241-42 

Trace analysis, application of cor
relation chromatography, 97,101-13 

Transformation, data into normal or 
exponential forms, 44 

Transformation power of data 
sets, 146-47 

Transformed data 
confidence intervals, 154t 
regression on, 133-64 

Transformed regression 
amount bandwidths and 

ranges, 191-92t 
comparison to nontransformed 

regression, 161 
Transformed-response variances 

chlorothalonil data, I44t 
fenvalerate data, l43t 
kepone data, l43t 

Transformer fluid 
fractional composition 

histograms, 222f 
gas chromatographic analysis, 227-32 
principal components plot, 219f 

Trans-science, description, 240 
Tr i f l u r a l i n disappearance from f i e l d 

s o i l , 25-35 

U 

Univariate environments, 256 
Univariate problem, description, 43 
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284 TRACE RESIDUE ANALYSIS 

Unknowns, predictions of 
composition, 156-57,220-23 

V 

Variability, changes with time, t r i 
f l u r a l i n content of fi e l d 
s o i l , 30-33 

Variable loadings, PCB mixture, 214f 
Variance 

of concentration, pesticide 
detection, 58-61 

measurements of t r i f l u r a l i n disap
pearance from f i e l d s o i l , 25-35 

random errors, definition, 6 
Visman equation, determination of 

dieldrin content of s o i l , 18-20 

W 

Weighted least-squares procedures, use 
in calibration-curve-based 
analysis, 115-31 

Weights, correlation, and standard 
errors, calibration-curve detec
tion limits, 77-78 

Wholeness of thinking, loss of, 3-4 
Working-Hotelling confidence band, for 

regression line, 139,141,151f 

Z 

Zero-dimensional case, hypothesis 
testing, 50 
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